Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import torch | |
import torch.nn as nn | |
from torch.cuda.amp import autocast as autocast | |
from transformers import T5TokenizerFast | |
from lavis.common.registry import registry | |
from lavis.models.blip2_models.blip2 import Blip2Base, disabled_train | |
from lavis.models.blip2_models.modeling_t5 import T5Config, T5ForConditionalGeneration | |
class Blip2T5(Blip2Base): | |
""" | |
BLIP2 T5 model. | |
Supported model types: | |
- pretrain_flant5xl: pretrained model with FlanT5-XL | |
- pretrain_flant5xl_vitL: pretrained model with FlanT5-XL | |
- pretrain_flant5xxl: pretrained model with FlanT5-XXL | |
- caption_coco_flant5xl: fintuned image captioning model with FlanT5-XL | |
Usage: | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip2_t5", "pretrain_flant5xl") | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"pretrain_flant5xl": "configs/models/blip2/blip2_pretrain_flant5xl.yaml", | |
"pretrain_flant5xl_vitL": "configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml", | |
"pretrain_flant5xxl": "configs/models/blip2/blip2_pretrain_flant5xxl.yaml", | |
"caption_coco_flant5xl": "configs/models/blip2/blip2_caption_flant5xl.yaml", | |
} | |
def __init__( | |
self, | |
vit_model="eva_clip_g", | |
img_size=224, | |
drop_path_rate=0, | |
use_grad_checkpoint=False, | |
vit_precision="fp16", | |
freeze_vit=True, | |
num_query_token=32, | |
t5_model="google/flan-t5-xl", | |
prompt="", | |
max_txt_len=32, | |
apply_lemmatizer=False, | |
): | |
""" | |
apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas. | |
""" | |
super().__init__() | |
self.tokenizer = self.init_tokenizer() | |
self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision | |
) | |
if freeze_vit: | |
for name, param in self.visual_encoder.named_parameters(): | |
param.requires_grad = False | |
self.visual_encoder = self.visual_encoder.eval() | |
self.visual_encoder.train = disabled_train | |
logging.info("freeze vision encoder") | |
self.Qformer, self.query_tokens = self.init_Qformer( | |
num_query_token, self.visual_encoder.num_features | |
) | |
self.Qformer.cls = None | |
self.Qformer.bert.embeddings.word_embeddings = None | |
self.Qformer.bert.embeddings.position_embeddings = None | |
for layer in self.Qformer.bert.encoder.layer: | |
layer.output = None | |
layer.intermediate = None | |
self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model) | |
t5_config = T5Config.from_pretrained(t5_model) | |
t5_config.dense_act_fn = "gelu" | |
self.t5_model = T5ForConditionalGeneration.from_pretrained( | |
t5_model, config=t5_config | |
) | |
for name, param in self.t5_model.named_parameters(): | |
param.requires_grad = False | |
param.data = param.data.bfloat16() | |
self.t5_proj = nn.Linear( | |
self.Qformer.config.hidden_size, self.t5_model.config.hidden_size | |
) | |
self.max_txt_len = max_txt_len | |
self.prompt = prompt | |
self._apply_lemmatizer = apply_lemmatizer | |
self._lemmatizer = None | |
def forward(self, samples): | |
image = samples["image"] | |
with self.maybe_autocast(): | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
inputs_t5 = self.t5_proj(query_output.last_hidden_state) | |
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) | |
with self.maybe_autocast(dtype=torch.bfloat16): | |
input_tokens = self.t5_tokenizer( | |
samples["text_input"], | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
return_tensors="pt", | |
).to(image.device) | |
output_tokens = self.t5_tokenizer( | |
samples["text_output"], | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
return_tensors="pt", | |
).to(image.device) | |
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1) | |
targets = output_tokens.input_ids.masked_fill( | |
output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100 | |
) | |
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) | |
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1) | |
outputs = self.t5_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=encoder_atts, | |
decoder_attention_mask=output_tokens.attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def generate( | |
self, | |
samples, | |
use_nucleus_sampling=False, | |
num_beams=5, | |
max_length=30, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
length_penalty=1.0, | |
num_captions=1, | |
temperature=1, | |
): | |
""" | |
Args: | |
samples (dict): A dictionary containing the following keys: | |
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) | |
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling. | |
num_beams (int): Number of beams for beam search. 1 means no beam search. | |
max_length (int): The maximum length of the sequence to be generated. | |
min_length (int): The minimum length of the sequence to be generated. | |
top_p (float): The cumulative probability for nucleus sampling. | |
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. | |
num_captions (int): Number of captions to be generated for each image. | |
Returns: | |
captions (list): A list of strings of length batch_size * num_captions. | |
""" | |
image = samples["image"] | |
with self.maybe_autocast(): | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_embeds = image_embeds.float() | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
inputs_t5 = self.t5_proj(query_output.last_hidden_state) | |
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) | |
if "prompt" in samples.keys(): | |
prompt = samples["prompt"] | |
else: | |
prompt = self.prompt | |
if isinstance(prompt, str): | |
prompt = [prompt] * image.size(0) | |
else: | |
assert len(prompt) == image.size( | |
0 | |
), "The number of prompts must be equal to the batch size." | |
input_tokens = self.t5_tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).to(image.device) | |
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1) | |
with self.maybe_autocast(dtype=torch.bfloat16): | |
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) | |
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1) | |
outputs = self.t5_model.generate( | |
inputs_embeds=inputs_embeds, | |
attention_mask=encoder_atts, | |
do_sample=use_nucleus_sampling, | |
top_p=top_p, | |
temperature=temperature, | |
num_beams=num_beams, | |
max_new_tokens=max_length, | |
min_length=min_length, | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
num_return_sequences=num_captions, | |
) | |
output_text = self.t5_tokenizer.batch_decode( | |
outputs, skip_special_tokens=True | |
) | |
return output_text | |
def predict_answers( | |
self, | |
samples, | |
num_beams=5, | |
inference_method="generate", | |
max_len=10, | |
min_len=1, | |
num_ans_candidates=128, | |
answer_list=None, | |
prompt="", | |
length_penalty=-1, | |
**kwargs | |
): | |
image = samples["image"] | |
with self.maybe_autocast(): | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_embeds = image_embeds.float() | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
inputs_t5 = self.t5_proj(query_output.last_hidden_state) | |
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) | |
if isinstance(samples["text_input"], str): | |
samples["text_input"] = [samples["text_input"]] | |
if prompt: | |
text_input = [prompt.format(question) for question in samples["text_input"]] | |
else: | |
text_input = samples["text_input"] | |
input_tokens = self.t5_tokenizer( | |
text_input, padding="longest", return_tensors="pt" | |
).to(image.device) | |
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1) | |
with self.maybe_autocast(dtype=torch.bfloat16): | |
inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) | |
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1) | |
outputs = self.t5_model.generate( | |
inputs_embeds=inputs_embeds, | |
attention_mask=encoder_atts, | |
do_sample=False, | |
num_beams=num_beams, | |
max_new_tokens=max_len, | |
min_length=min_len, | |
length_penalty=length_penalty, | |
) | |
output_text = self.t5_tokenizer.batch_decode( | |
outputs, skip_special_tokens=True | |
) | |
if self._apply_lemmatizer: | |
output_text = self._lemmatize(output_text) | |
return output_text | |
def _lemmatize(self, answers): | |
def apply(answer): | |
doc = self.lemmatizer(answer) | |
words = [] | |
for token in doc: | |
if token.pos_ in ["NOUN", "VERB"]: | |
words.append(token.lemma_) | |
else: | |
words.append(token.text) | |
answer = " ".join(words) | |
return answer | |
return [apply(answer) for answer in answers] | |
def lemmatizer(self): | |
if self._lemmatizer is None: | |
try: | |
import spacy | |
self._lemmatizer = spacy.load("en_core_web_sm") | |
except ImportError: | |
logging.error( | |
""" | |
Please install spacy and en_core_web_sm model to apply lemmatization. | |
python -m spacy download en_core_web_sm | |
OR | |
import spacy.cli | |
spacy.cli.download("en_core_web_sm") | |
""" | |
) | |
exit(1) | |
return self._lemmatizer | |
def from_config(cls, cfg): | |
vit_model = cfg.get("vit_model", "eva_clip_g") | |
img_size = cfg.get("image_size") | |
num_query_token = cfg.get("num_query_token") | |
t5_model = cfg.get("t5_model") | |
drop_path_rate = cfg.get("drop_path_rate", 0) | |
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) | |
vit_precision = cfg.get("vit_precision", "fp16") | |
freeze_vit = cfg.get("freeze_vit", True) | |
prompt = cfg.get("prompt", "") | |
max_txt_len = cfg.get("max_txt_len", 32) | |
apply_lemmatizer = cfg.get("apply_lemmatizer", False) | |
model = cls( | |
vit_model=vit_model, | |
img_size=img_size, | |
drop_path_rate=drop_path_rate, | |
use_grad_checkpoint=use_grad_checkpoint, | |
vit_precision=vit_precision, | |
freeze_vit=freeze_vit, | |
num_query_token=num_query_token, | |
t5_model=t5_model, | |
prompt=prompt, | |
max_txt_len=max_txt_len, | |
apply_lemmatizer=apply_lemmatizer, | |
) | |
model.load_checkpoint_from_config(cfg) | |
return model | |