jchwenger's picture
Upload 351 files (#2)
d9272c6 verified
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import os
from copy import deepcopy
import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.common.utils import get_abs_path, is_url
from lavis.models.albef_models import AlbefBase
from lavis.models.albef_models.albef_outputs import AlbefIntermediateOutput, AlbefOutput
from lavis.models.base_model import MomentumDistilationMixin, tile
from lavis.models.med import BertConfig, BertLMHeadModel, XBertEncoder
from lavis.models.vit import VisionTransformerEncoder, interpolate_pos_embed
from lavis.common.dist_utils import download_cached_file
@registry.register_model("albef_vqa")
class AlbefVQA(AlbefBase, MomentumDistilationMixin):
"""
ALBEF VQA models.
Supported model types:
- base: vqa model initialized with pre-trained ALBEF base model on 115M image-text pairs after CapFilt; not fine-tuned.
- vqav2: fine-tuned ALBEF base model on VQA v2.0 dataset.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("albef_vqa", "vqav2")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"vqav2": "configs/models/albef_vqav2.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
text_decoder,
use_distill=True,
momentum=0.995,
alpha=0.4,
max_txt_len=35,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.max_txt_len = max_txt_len
self.use_distill = use_distill
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
self.text_decoder = text_decoder
if self.use_distill:
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.text_decoder_m = deepcopy(self.text_decoder)
self.momentum = momentum
self.alpha = alpha
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.text_decoder, self.text_decoder_m],
]
self.copy_params()
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / num_iters_per_epoch)
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (list): A list of strings, each string is a question
- answer (list): A list of strings, each string is an answer
- weight (torch.Tensor): A tensor used to weigh each answer in the loss computation.
The shape of the tensor is (sum(n_answers),)
- n_answers (torch.Tensor): A tensor shape (batch_size,) containing the number of answers
for each question in the batch.
Returns:
An AlbefOutput object containing loss and intermediate outputs;
see lavis/models/albef_models/albef_outputs.py for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("albef_vqa")
>>> samples = {
... "image": torch.rand(2, 3, 384, 384),
... "text_input": ["What is this?", "What is that?"],
... "answer": ["cat", "cat", "dog"],
... "weight": torch.tensor([1.0, 1.0, 1.0]),
... "n_answers": torch.tensor([2, 1]),
... "epoch": 0, "iters": 0, "num_iters_per_epoch": 1000,
... }
>>> output = model(samples)
>>> output.keys()
odict_keys(['intermediate_output', 'loss'])
"""
(
encoder_output,
encoder_output_m,
image_embeds,
image_embeds_m,
) = self.forward_encoder(samples)
loss, decoder_output, decoder_targets = self.forward_decoder(
samples, encoder_out=(encoder_output, encoder_output_m)
)
return AlbefOutput(
loss=loss,
intermediate_output=AlbefIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
encoder_output=encoder_output,
encoder_output_m=encoder_output_m,
decoder_output=decoder_output,
decoder_labels=decoder_targets,
),
)
def forward_encoder(self, samples):
questions = samples["text_input"]
questions = self.tokenizer(
questions,
padding="longest",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
samples.update({"tokenized_text": questions})
image_embeds = self.visual_encoder.forward_features(samples["image"])
encoder_output = self.text_encoder.forward_automask(
tokenized_text=samples["tokenized_text"], visual_embeds=image_embeds
)
if self.use_distill:
self._momentum_update()
with torch.no_grad():
image_embeds_m = self.visual_encoder_m(samples["image"])
encoder_output_m = self.text_encoder_m.forward_automask(
tokenized_text=samples["tokenized_text"],
visual_embeds=image_embeds_m,
)
else:
encoder_output_m = None
image_embeds_m = None
return encoder_output, encoder_output_m, image_embeds, image_embeds_m
def forward_decoder(self, samples, encoder_out, **kwargs):
answers = self.tokenizer(
samples["answer"], padding="longest", return_tensors="pt"
).to(self.device)
answer_targets = answers.input_ids.masked_fill(
answers.input_ids == self.tokenizer.pad_token_id, -100
)
question_states = []
question_atts = []
question = samples["tokenized_text"]
question_output, question_output_m = encoder_out
for b, n in enumerate(samples["n_answers"]):
question_states += [question_output.last_hidden_state[b]] * n
question_atts += [question.attention_mask[b]] * n
question_states = torch.stack(question_states, dim=0)
question_atts = torch.stack(question_atts, dim=0)
if self.use_distill:
with torch.no_grad():
question_states_m = []
for b, n in enumerate(samples["n_answers"]):
question_states_m += [question_output_m.last_hidden_state[b]] * n
question_states_m = torch.stack(question_states_m, 0)
logits_m = self.text_decoder_m(
answers.input_ids,
attention_mask=answers.attention_mask,
encoder_hidden_states=question_states_m,
encoder_attention_mask=question_atts,
return_logits=True,
)
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
answer_output = self.text_decoder(
answers.input_ids,
attention_mask=answers.attention_mask,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=answer_targets,
soft_labels=F.softmax(logits_m, dim=-1),
alpha=alpha,
return_dict=True,
reduction="none",
)
loss = samples["weight"] * answer_output.loss
bsz = samples["image"].size(0)
loss = loss.sum() / bsz
return loss, answer_output, answer_targets
def predict_answers(self, samples, answer_list, num_ans_candidates=128, **kwargs):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_ans_candidates (int): Number of answer candidates, used to filter out answers with low probability.
answer_list (list): A list of strings, each string is an answer.
Returns:
List: A list of strings, each string is an answer.
Examples:
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> model, vis_processors, txt_processors = load_model_and_preprocess("albef_vqa", "vqav2")
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> question = "Which city is this photo taken?"
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> question = txt_processors["eval"](question)
>>> samples = {"image": image, "text_input": [question]}
>>> answer_list = ["Singapore", "London", "Palo Alto", "Tokyo"]
>>> answers = model.predict_answers(samples, answer_list=answer_list)
>>> answers
['Singapore']
"""
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
num_ans_candidates = min(num_ans_candidates, len(answer_list))
return self.rank_answers(
samples, answer_list=answer_list, num_ans_candidates=num_ans_candidates
)
def rank_answers(self, samples, answer_list, num_ans_candidates):
"""
Generate the first token of answers using decoder and select ${num_ans_candidates}
most probable ones. Then select answers from answer list, which start with the probable tokens.
Lastly, use the selected answers as the ground-truth labels for decoding and calculating LM loss.
Return the answers that minimize the losses as result.
"""
answer_candidates = self.tokenizer(
answer_list, padding="longest", return_tensors="pt"
).to(self.device)
# answer_candidates.input_ids[:, 0] = self.tokenizer.bos_token_id
answer_ids = answer_candidates.input_ids
answer_atts = answer_candidates.attention_mask
question_output, _, _, _ = self.forward_encoder(samples)
question_states = question_output.last_hidden_state
tokenized_question = samples["tokenized_text"]
question_atts = tokenized_question.attention_mask
num_ques = question_states.size(0)
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token
start_output = self.text_decoder(
start_ids,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
return_dict=True,
reduction="none",
)
logits = start_output.logits[:, 0, :] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:, 1]
prob_first_token = F.softmax(logits, dim=1).index_select(
dim=1, index=answer_first_token
)
topk_probs, topk_ids = prob_first_token.topk(num_ans_candidates, dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids, dim=0)
input_atts = torch.cat(input_atts, dim=0)
targets_ids = input_ids.masked_fill(
input_ids == self.tokenizer.pad_token_id, -100
)
# repeat encoder's output for top-k answers
question_states = tile(question_states, 0, num_ans_candidates)
question_atts = tile(question_atts, 0, num_ans_candidates)
output = self.text_decoder(
input_ids,
attention_mask=input_atts,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=targets_ids,
return_dict=True,
reduction="none",
)
log_probs_sum = -output.loss
log_probs_sum = log_probs_sum.view(num_ques, num_ans_candidates)
max_topk_ids = log_probs_sum.argmax(dim=1)
max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids]
answers = [answer_list[max_id] for max_id in max_ids]
return answers
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg)
text_encoder = XBertEncoder.from_config(cfg)
config_decoder = BertConfig.from_json_file(get_abs_path(cfg["med_config_path"]))
config_decoder.fusion_layer = 0
config_decoder.num_hidden_layers = 6
text_decoder = BertLMHeadModel.from_pretrained(
"bert-base-uncased", config=config_decoder
)
alpha = cfg.get("alpha", 0.4)
momentum = cfg.get("momentum", 0.995)
use_distill = cfg.get("use_distill", True)
max_txt_len = cfg.get("max_txt_len", 25)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
text_decoder=text_decoder,
use_distill=use_distill,
momentum=momentum,
alpha=alpha,
max_txt_len=max_txt_len,
)
# load pre-trained weights
model.load_checkpoint_from_config(cfg)
return model
def load_from_pretrained(self, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
if "model" in checkpoint:
state_dict = checkpoint["model"]
else:
state_dict = checkpoint
# reshape positional embedding to accomodate for image resolution change
pos_embed_reshaped = interpolate_pos_embed(
state_dict["visual_encoder.pos_embed"], self.visual_encoder
)
state_dict["visual_encoder.pos_embed"] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(
state_dict["visual_encoder_m.pos_embed"], self.visual_encoder_m
)
state_dict["visual_encoder_m.pos_embed"] = m_pos_embed_reshaped
for key in list(state_dict.keys()):
if "bert" in key:
encoder_key = key.replace("bert.", "")
state_dict[encoder_key] = state_dict[key]
# intialize text decoder as multimodal encoder (last 6 layers of model.text_encoder)
if "text_encoder" in key:
if "layer" in key:
encoder_keys = key.split(".")
layer_num = int(encoder_keys[4])
if layer_num < 6:
del state_dict[key]
continue
else:
decoder_layer_num = layer_num - 6
encoder_keys[4] = str(decoder_layer_num)
encoder_key = ".".join(encoder_keys)
else:
encoder_key = key
decoder_key = encoder_key.replace("text_encoder", "text_decoder")
state_dict[decoder_key] = state_dict[key]
del state_dict[key]
for key in self.state_dict().keys():
if key in state_dict.keys():
if state_dict[key].shape != self.state_dict()[key].shape:
del state_dict[key]
msg = self.load_state_dict(state_dict, strict=False)
logging.info("load checkpoint from %s" % url_or_filename)
logging.info(f"missing keys: {msg.missing_keys}")
return msg