Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import datetime | |
import logging | |
import os | |
import time | |
import lavis.common.dist_utils as dist_utils | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from lavis.common.dist_utils import download_cached_file | |
from lavis.common.logger import MetricLogger | |
from lavis.common.utils import is_url | |
from lavis.models.base_model import BaseModel | |
from lavis.models.vit import interpolate_pos_embed | |
from transformers import BertTokenizer | |
class AlbefBase(BaseModel): | |
def init_tokenizer(cls): | |
return BertTokenizer.from_pretrained("bert-base-uncased") | |
def load_from_pretrained(self, url_or_filename, rename_text_keys=True): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file( | |
url_or_filename, check_hash=False, progress=True | |
) | |
checkpoint = torch.load(cached_file, map_location="cpu") | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location="cpu") | |
else: | |
raise RuntimeError("checkpoint url or path is invalid") | |
if "model" in checkpoint: | |
state_dict = checkpoint["model"] | |
else: | |
state_dict = checkpoint | |
state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed( | |
state_dict["visual_encoder.pos_embed"], self.visual_encoder | |
) | |
if ( | |
"visual_encoder_m.pos_embed" in self.state_dict().keys() | |
and "visual_encoder_m.pos_embed" in state_dict | |
): | |
state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed( | |
state_dict["visual_encoder_m.pos_embed"], self.visual_encoder_m | |
) | |
if rename_text_keys: | |
for key in list(state_dict.keys()): | |
if "bert" in key: | |
new_key = key.replace("bert.", "") | |
state_dict[new_key] = state_dict[key] | |
del state_dict[key] | |
for key in self.state_dict().keys(): | |
if key in state_dict.keys(): | |
if state_dict[key].shape != self.state_dict()[key].shape: | |
del state_dict[key] | |
msg = self.load_state_dict(state_dict, strict=False) | |
logging.info("Missing keys {}".format(msg.missing_keys)) | |
logging.info("load checkpoint from %s" % url_or_filename) | |
return msg | |
def compute_sim_matrix(model, data_loader, **kwargs): | |
k_test = kwargs.pop("k_test") | |
metric_logger = MetricLogger(delimiter=" ") | |
header = "Evaluation:" | |
logging.info("Computing features for evaluation...") | |
start_time = time.time() | |
texts = data_loader.dataset.text | |
num_text = len(texts) | |
text_bs = 256 | |
text_ids = [] | |
text_embeds = [] | |
text_atts = [] | |
for i in range(0, num_text, text_bs): | |
text = texts[i : min(num_text, i + text_bs)] | |
text_input = model.tokenizer( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=35, | |
return_tensors="pt", | |
).to(model.device) | |
text_output = model.text_encoder.forward_text(text_input) | |
text_embed = F.normalize( | |
model.text_proj(text_output.last_hidden_state[:, 0, :]) | |
) | |
text_embeds.append(text_embed) | |
text_ids.append(text_input.input_ids) | |
text_atts.append(text_input.attention_mask) | |
text_embeds = torch.cat(text_embeds, dim=0) | |
text_ids = torch.cat(text_ids, dim=0) | |
text_atts = torch.cat(text_atts, dim=0) | |
if hasattr(model.tokenizer, "enc_token_id"): | |
text_ids[:, 0] = model.tokenizer.enc_token_id | |
image_feats = [] | |
image_embeds = [] | |
for samples in data_loader: | |
image = samples["image"] | |
image = image.to(model.device) | |
image_feat = model.visual_encoder.forward_features(image) | |
image_embed = model.vision_proj(image_feat[:, 0, :]) | |
image_embed = F.normalize(image_embed, dim=-1) | |
image_feats.append(image_feat.cpu()) | |
image_embeds.append(image_embed) | |
image_feats = torch.cat(image_feats, dim=0) | |
image_embeds = torch.cat(image_embeds, dim=0) | |
sims_matrix = image_embeds @ text_embeds.t() | |
score_matrix_i2t = torch.full( | |
(len(data_loader.dataset.image), len(texts)), -100.0 | |
).to(model.device) | |
num_tasks = dist_utils.get_world_size() | |
rank = dist_utils.get_rank() | |
step = sims_matrix.size(0) // num_tasks + 1 | |
start = rank * step | |
end = min(sims_matrix.size(0), start + step) | |
for i, sims in enumerate( | |
metric_logger.log_every(sims_matrix[start:end], 50, header) | |
): | |
# topk_sim, topk_idx = sims.topk(k=config["k_test"], dim=0) | |
topk_sim, topk_idx = sims.topk(k=k_test, dim=0) | |
encoder_output = image_feats[start + i].repeat(k_test, 1, 1).to(model.device) | |
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to( | |
model.device | |
) | |
output = model.text_encoder( | |
text_ids[topk_idx], | |
attention_mask=text_atts[topk_idx], | |
encoder_hidden_states=encoder_output, | |
encoder_attention_mask=encoder_att, | |
return_dict=True, | |
) | |
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1] | |
score_matrix_i2t[start + i, topk_idx] = score + topk_sim | |
sims_matrix = sims_matrix.t() | |
score_matrix_t2i = torch.full( | |
(len(texts), len(data_loader.dataset.image)), -100.0 | |
).to(model.device) | |
step = sims_matrix.size(0) // num_tasks + 1 | |
start = rank * step | |
end = min(sims_matrix.size(0), start + step) | |
for i, sims in enumerate( | |
metric_logger.log_every(sims_matrix[start:end], 50, header) | |
): | |
topk_sim, topk_idx = sims.topk(k=k_test, dim=0) | |
encoder_output = image_feats[topk_idx.cpu()].to(model.device) | |
encoder_att = torch.ones(encoder_output.size()[:-1], dtype=torch.long).to( | |
model.device | |
) | |
output = model.text_encoder( | |
text_ids[start + i].repeat(k_test, 1), | |
attention_mask=text_atts[start + i].repeat(k_test, 1), | |
encoder_hidden_states=encoder_output, | |
encoder_attention_mask=encoder_att, | |
return_dict=True, | |
) | |
score = model.itm_head(output.last_hidden_state[:, 0, :])[:, 1] | |
score_matrix_t2i[start + i, topk_idx] = score + topk_sim | |
if dist_utils.is_dist_avail_and_initialized(): | |
dist.barrier() | |
torch.distributed.all_reduce( | |
score_matrix_i2t, op=torch.distributed.ReduceOp.SUM | |
) | |
torch.distributed.all_reduce( | |
score_matrix_t2i, op=torch.distributed.ReduceOp.SUM | |
) | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
logging.info("Evaluation time {}".format(total_time_str)) | |
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy() | |