File size: 16,521 Bytes
e84842d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import torch
import torch.nn as nn
from itertools import chain
from lavis.common.registry import registry
from lavis.models.base_model import BaseModel
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import T5ForConditionalGeneration
from lavis.models.pnp_vqa_models import prepare_qa_input
from lavis.models.blip_models.blip_image_text_matching import compute_gradcam
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions


@registry.register_model("pnp_vqa")
class PNPVQA(BaseModel):
    """
    PNPVQA model consists of three submodels for zero-shot VQA:
        1. Image-questioning matching model
        2. Image captioning model
        3. Question answering model

    Supported model types:
        - base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base)
        - large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large)
        - 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b)

    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("pnp_vqa", "base", is_eval=True)
        >>> model = load_model("pnp_vqa", "large", is_eval=True)
        >>> model = load_model("pnp_vqa", "3b", is_eval=True)
    """

    PRETRAINED_MODEL_CONFIG_DICT = {"base": "configs/models/pnp-vqa/pnp_vqa_base.yaml",
                                    "large": "configs/models/pnp-vqa/pnp_vqa_large.yaml",
                                    "3b": "configs/models/pnp-vqa/pnp_vqa_3b.yaml",
                                    }

    def __init__(self, image_question_matching_model, image_captioning_model,
                 question_answering_model, offload_model=False):
        super().__init__()

        self.image_question_matching_model = image_question_matching_model
        self.image_captioning_model = image_captioning_model
        self.question_answering_model = question_answering_model
        self.offload_model = offload_model

    def forward_itm(self, samples, block_num=7):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
            block_num (int): The index of cross-attention block for gradcam computation.

        Returns:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
                - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
        """
        image = samples['image']
        question = [text.strip('?') for text in samples['text_input']]
        tokenized_text = self.image_question_matching_model.tokenizer(question, padding='longest', truncation=True,
                                                return_tensors="pt").to(self.image_question_matching_model.device)
        with torch.set_grad_enabled(True):
            gradcams, _ = compute_gradcam(model=self.image_question_matching_model,
                            visual_input=image,
                            text_input=question,
                            tokenized_text=tokenized_text,
                            block_num=block_num)

        gradcams = [gradcam_[1] for gradcam_ in gradcams]
        samples['gradcams'] = torch.stack(gradcams).reshape(samples['image'].size(0), -1)

        return samples

    def forward_cap(
            self,
            samples,
            cap_max_length=20,
            cap_min_length=0,
            top_p=1,
            top_k=50,
            repetition_penalty=1.0,
            num_captions=100,
            num_patches=20,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
                - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
            cap_max_length (int): The maximum length of the caption to be generated.
            cap_min_length (int): The minimum length of the caption to be generated.
            top_p (float): The cumulative probability for nucleus sampling.
            top_k (float): The number of the highest probability tokens for top-k sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_captions (int): Number of captions generated for each image.
            num_patches (int): Number of patches sampled for each image.

        Returns:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
                - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
                - captions (nested list): A nested list of strings of total length batch_size * num_captions
        """
        encoder_out = self.image_captioning_model.forward_encoder(samples)
        captions = [[] for _ in range(encoder_out.size(0))]

        min_num_captions = 0

        while min_num_captions < num_captions:
            encoder_out_samples = []
            for i in range(num_captions):
                patch_id = torch.multinomial(samples['gradcams'].to(self.image_captioning_model.device),
                                             num_patches).reshape(encoder_out.size(0), -1) + 1
                patch_id = patch_id.sort(dim=1).values.unsqueeze(-1).expand(-1, -1, encoder_out.size(2))
                encoder_out_sample = torch.gather(encoder_out, 1, patch_id)
                encoder_out_samples.append(encoder_out_sample)

            stacked = torch.stack(encoder_out_samples, dim=1)
            image_embeds = torch.flatten(stacked, start_dim=0, end_dim=1) #(bsz*num_seq, num_patch, dim)

            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.image_captioning_model.device)
            model_kwargs = {
                "encoder_hidden_states": image_embeds,
                "encoder_attention_mask": image_atts,
            }

            prompt = [self.image_captioning_model.prompt] * image_embeds.size(0)
            prompt = self.image_captioning_model.tokenizer(prompt,
                                                           return_tensors="pt").to(self.image_captioning_model.device)
            prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id
            prompt.input_ids = prompt.input_ids[:, :-1]

            decoder_out = self.image_captioning_model.text_decoder.generate(
                input_ids=prompt.input_ids,
                max_length=cap_max_length,
                min_length=cap_min_length,
                do_sample=True,
                top_p=top_p,
                top_k=top_k,
                num_return_sequences=1,
                eos_token_id=self.image_captioning_model.tokenizer.sep_token_id,
                pad_token_id=self.image_captioning_model.tokenizer.pad_token_id,
                repetition_penalty=repetition_penalty,
                **model_kwargs)

            outputs = self.image_captioning_model.tokenizer.batch_decode(decoder_out, skip_special_tokens=True)

            for counter, output in enumerate(outputs):
                ind = counter//num_captions
                if len(captions[ind]) < num_captions:
                    caption = output[len(self.image_captioning_model.prompt):]
                    overlap_caption = [1 for caps in captions[ind] if caption in caps]
                    if len(overlap_caption) == 0:
                        captions[ind].append(caption)

            min_num_captions = min([len(i) for i in captions])

        samples['captions'] = captions

        return samples

    def forward_qa(
            self,
            samples,
            num_beams=1,
            max_len=20,
            min_len=0,
            internal_bsz_fid=1,
            num_captions=100,
            num_captions_fid=1,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
                - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
                - captions (nested list): A nested list of strings of total length batch_size * num_captions
                - question_captions (nested list): A nested list of concatenated strings of questions and captions
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            max_len (int): Maximum length of generated answers.
            min_len (int): Minimum length of generated answers.
            internal_bsz_fid (int): Internal batch size when using FiD decoding.
            num_captions (int): Number of captions generated for each image.
            num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.

        Returns:
            List: A list of strings, each string is an answer.
        """
        prepare_qa_input(samples, num_captions=num_captions, num_captions_fid=num_captions_fid)

        pred_answers = []
        question_captions = samples['question_captions']
        question_captions_chunk = [question_captions[i:i + internal_bsz_fid]
                                   for i in range(0, len(question_captions), internal_bsz_fid)]
        question_captions_chunk = list(chain(*question_captions_chunk))

        for question_caption in question_captions_chunk:
            question_caption_input = self.question_answering_model.tokenizer(question_caption, padding='longest',
                                        truncation=True, return_tensors="pt").to(self.question_answering_model.device)

            question_caption_input.input_ids = question_caption_input.input_ids.reshape(
                                               internal_bsz_fid, -1, question_caption_input.input_ids.size(1))
            question_caption_input.attention_mask = question_caption_input.attention_mask.reshape(
                                               internal_bsz_fid, -1, question_caption_input.attention_mask.size(1))

            outputs = self.question_answering_model.generate(input_ids=question_caption_input.input_ids,
                                            attention_mask=question_caption_input.attention_mask,
                                            num_beams=num_beams,
                                            min_length=min_len,
                                            max_length=max_len,
                                            )

            for output in outputs:
                pred_answer = self.question_answering_model.tokenizer.decode(output, skip_special_tokens=True)
                pred_answers.append(pred_answer)

        return pred_answers

    def predict_answers(
        self,
        samples,
        num_beams=1,
        inference_method="generate",
        max_len=20,
        min_len=0,
        internal_bsz_fid=1,
        num_captions=50,
        num_captions_fid=1,
        cap_max_length=20,
        cap_min_length=10,
        top_k=50,
        top_p=1,
        repetition_penalty=1,
        num_patches=50,
        block_num=7,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
                - text_input (str or [str]): String or a list of strings, each string is a question.
                                             The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            inference_method (str): Inference method. Must be "generate". The model will generate answers.
            max_len (int): Maximum length of generated answers.
            min_len (int): Minimum length of generated answers.
            internal_bsz_fid (int): Internal batch size when using FiD decoding.
            num_captions (int): Number of captions generated for each image.
            num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
            cap_max_length (int): The maximum length of the caption to be generated.
            cap_min_length (int): The minimum length of the caption to be generated.
            top_k (float): The number of the highest probability tokens for top-k sampling.
            top_p (float): The cumulative probability for nucleus sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_patches (int): Number of patches sampled for each image.
            block_num (int): The index of cross-attention block for gradcam computation.

        Returns:
            List: A list of strings, each string is an answer.
            gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
            captions (nested list): A nested list of strings of total length batch_size * num_captions
        """
        assert inference_method in [
            "generate",
        ], "Inference method must be 'generate', got {}.".format(
            inference_method
        )

        if isinstance(samples["text_input"], str):
            samples["text_input"] = [samples["text_input"]]

        assert len(samples["text_input"]) == samples["image"].size(
            0
        ), "The number of questions must be equal to the batch size."

        samples = self.forward_itm(samples, block_num=block_num)

        samples = self.forward_cap(samples,
                                   cap_max_length=cap_max_length,
                                   cap_min_length=cap_min_length,
                                   top_k=top_k,
                                   top_p=top_p,
                                   repetition_penalty=repetition_penalty,
                                   num_captions=num_captions,
                                   num_patches=num_patches)

        if self.offload_model:
            samples['image'] = samples['image'].to('cpu')
            self.image_question_matching_model.to('cpu')
            self.image_captioning_model.to('cpu')
        torch.cuda.empty_cache()

        pred_answers = self.forward_qa(samples,
                                  num_beams=num_beams,
                                  max_len=max_len,
                                  min_len=min_len,
                                  internal_bsz_fid=internal_bsz_fid,
                                  num_captions=num_captions,
                                  num_captions_fid=num_captions_fid)

        if self.offload_model:
            self.image_question_matching_model.to(self.question_answering_model.device)
            self.image_captioning_model.to(self.question_answering_model.device)

        return pred_answers, samples['captions'], samples['gradcams']

    @classmethod
    def from_config(cls, model_config):
        itm_config = model_config.image_question_matching_model
        cap_config = model_config.image_captioning_model
        qa_config = model_config.question_answering_model

        itm_cls = registry.get_model_class(itm_config.arch)
        cap_cls = registry.get_model_class(cap_config.arch)
        qa_cls = registry.get_model_class(qa_config.arch)

        image_question_matching_model = itm_cls.from_config(itm_config)
        image_captioning_model = cap_cls.from_config(cap_config)
        question_answering_model = qa_cls.from_config(qa_config)

        model = cls(image_question_matching_model=image_question_matching_model,
                    image_captioning_model=image_captioning_model,
                    question_answering_model=question_answering_model,
                    offload_model= True if model_config.model_type == '3b' else False,
                    )

        return model