Spaces:
Sleeping
Sleeping
File size: 16,521 Bytes
e84842d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import torch
import torch.nn as nn
from itertools import chain
from lavis.common.registry import registry
from lavis.models.base_model import BaseModel
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import T5ForConditionalGeneration
from lavis.models.pnp_vqa_models import prepare_qa_input
from lavis.models.blip_models.blip_image_text_matching import compute_gradcam
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
@registry.register_model("pnp_vqa")
class PNPVQA(BaseModel):
"""
PNPVQA model consists of three submodels for zero-shot VQA:
1. Image-questioning matching model
2. Image captioning model
3. Question answering model
Supported model types:
- base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base)
- large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large)
- 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b)
Usage:
>>> from lavis.models import load_model
>>> model = load_model("pnp_vqa", "base", is_eval=True)
>>> model = load_model("pnp_vqa", "large", is_eval=True)
>>> model = load_model("pnp_vqa", "3b", is_eval=True)
"""
PRETRAINED_MODEL_CONFIG_DICT = {"base": "configs/models/pnp-vqa/pnp_vqa_base.yaml",
"large": "configs/models/pnp-vqa/pnp_vqa_large.yaml",
"3b": "configs/models/pnp-vqa/pnp_vqa_3b.yaml",
}
def __init__(self, image_question_matching_model, image_captioning_model,
question_answering_model, offload_model=False):
super().__init__()
self.image_question_matching_model = image_question_matching_model
self.image_captioning_model = image_captioning_model
self.question_answering_model = question_answering_model
self.offload_model = offload_model
def forward_itm(self, samples, block_num=7):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
"""
image = samples['image']
question = [text.strip('?') for text in samples['text_input']]
tokenized_text = self.image_question_matching_model.tokenizer(question, padding='longest', truncation=True,
return_tensors="pt").to(self.image_question_matching_model.device)
with torch.set_grad_enabled(True):
gradcams, _ = compute_gradcam(model=self.image_question_matching_model,
visual_input=image,
text_input=question,
tokenized_text=tokenized_text,
block_num=block_num)
gradcams = [gradcam_[1] for gradcam_ in gradcams]
samples['gradcams'] = torch.stack(gradcams).reshape(samples['image'].size(0), -1)
return samples
def forward_cap(
self,
samples,
cap_max_length=20,
cap_min_length=0,
top_p=1,
top_k=50,
repetition_penalty=1.0,
num_captions=100,
num_patches=20,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_p (float): The cumulative probability for nucleus sampling.
top_k (float): The number of the highest probability tokens for top-k sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions generated for each image.
num_patches (int): Number of patches sampled for each image.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
- captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
encoder_out = self.image_captioning_model.forward_encoder(samples)
captions = [[] for _ in range(encoder_out.size(0))]
min_num_captions = 0
while min_num_captions < num_captions:
encoder_out_samples = []
for i in range(num_captions):
patch_id = torch.multinomial(samples['gradcams'].to(self.image_captioning_model.device),
num_patches).reshape(encoder_out.size(0), -1) + 1
patch_id = patch_id.sort(dim=1).values.unsqueeze(-1).expand(-1, -1, encoder_out.size(2))
encoder_out_sample = torch.gather(encoder_out, 1, patch_id)
encoder_out_samples.append(encoder_out_sample)
stacked = torch.stack(encoder_out_samples, dim=1)
image_embeds = torch.flatten(stacked, start_dim=0, end_dim=1) #(bsz*num_seq, num_patch, dim)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.image_captioning_model.device)
model_kwargs = {
"encoder_hidden_states": image_embeds,
"encoder_attention_mask": image_atts,
}
prompt = [self.image_captioning_model.prompt] * image_embeds.size(0)
prompt = self.image_captioning_model.tokenizer(prompt,
return_tensors="pt").to(self.image_captioning_model.device)
prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id
prompt.input_ids = prompt.input_ids[:, :-1]
decoder_out = self.image_captioning_model.text_decoder.generate(
input_ids=prompt.input_ids,
max_length=cap_max_length,
min_length=cap_min_length,
do_sample=True,
top_p=top_p,
top_k=top_k,
num_return_sequences=1,
eos_token_id=self.image_captioning_model.tokenizer.sep_token_id,
pad_token_id=self.image_captioning_model.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
outputs = self.image_captioning_model.tokenizer.batch_decode(decoder_out, skip_special_tokens=True)
for counter, output in enumerate(outputs):
ind = counter//num_captions
if len(captions[ind]) < num_captions:
caption = output[len(self.image_captioning_model.prompt):]
overlap_caption = [1 for caps in captions[ind] if caption in caps]
if len(overlap_caption) == 0:
captions[ind].append(caption)
min_num_captions = min([len(i) for i in captions])
samples['captions'] = captions
return samples
def forward_qa(
self,
samples,
num_beams=1,
max_len=20,
min_len=0,
internal_bsz_fid=1,
num_captions=100,
num_captions_fid=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
- captions (nested list): A nested list of strings of total length batch_size * num_captions
- question_captions (nested list): A nested list of concatenated strings of questions and captions
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
internal_bsz_fid (int): Internal batch size when using FiD decoding.
num_captions (int): Number of captions generated for each image.
num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
Returns:
List: A list of strings, each string is an answer.
"""
prepare_qa_input(samples, num_captions=num_captions, num_captions_fid=num_captions_fid)
pred_answers = []
question_captions = samples['question_captions']
question_captions_chunk = [question_captions[i:i + internal_bsz_fid]
for i in range(0, len(question_captions), internal_bsz_fid)]
question_captions_chunk = list(chain(*question_captions_chunk))
for question_caption in question_captions_chunk:
question_caption_input = self.question_answering_model.tokenizer(question_caption, padding='longest',
truncation=True, return_tensors="pt").to(self.question_answering_model.device)
question_caption_input.input_ids = question_caption_input.input_ids.reshape(
internal_bsz_fid, -1, question_caption_input.input_ids.size(1))
question_caption_input.attention_mask = question_caption_input.attention_mask.reshape(
internal_bsz_fid, -1, question_caption_input.attention_mask.size(1))
outputs = self.question_answering_model.generate(input_ids=question_caption_input.input_ids,
attention_mask=question_caption_input.attention_mask,
num_beams=num_beams,
min_length=min_len,
max_length=max_len,
)
for output in outputs:
pred_answer = self.question_answering_model.tokenizer.decode(output, skip_special_tokens=True)
pred_answers.append(pred_answer)
return pred_answers
def predict_answers(
self,
samples,
num_beams=1,
inference_method="generate",
max_len=20,
min_len=0,
internal_bsz_fid=1,
num_captions=50,
num_captions_fid=1,
cap_max_length=20,
cap_min_length=10,
top_k=50,
top_p=1,
repetition_penalty=1,
num_patches=50,
block_num=7,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_beams (int): Number of beams for beam search. 1 means no beam search.
inference_method (str): Inference method. Must be "generate". The model will generate answers.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
internal_bsz_fid (int): Internal batch size when using FiD decoding.
num_captions (int): Number of captions generated for each image.
num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_k (float): The number of the highest probability tokens for top-k sampling.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_patches (int): Number of patches sampled for each image.
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
List: A list of strings, each string is an answer.
gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
assert inference_method in [
"generate",
], "Inference method must be 'generate', got {}.".format(
inference_method
)
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
samples = self.forward_itm(samples, block_num=block_num)
samples = self.forward_cap(samples,
cap_max_length=cap_max_length,
cap_min_length=cap_min_length,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_captions=num_captions,
num_patches=num_patches)
if self.offload_model:
samples['image'] = samples['image'].to('cpu')
self.image_question_matching_model.to('cpu')
self.image_captioning_model.to('cpu')
torch.cuda.empty_cache()
pred_answers = self.forward_qa(samples,
num_beams=num_beams,
max_len=max_len,
min_len=min_len,
internal_bsz_fid=internal_bsz_fid,
num_captions=num_captions,
num_captions_fid=num_captions_fid)
if self.offload_model:
self.image_question_matching_model.to(self.question_answering_model.device)
self.image_captioning_model.to(self.question_answering_model.device)
return pred_answers, samples['captions'], samples['gradcams']
@classmethod
def from_config(cls, model_config):
itm_config = model_config.image_question_matching_model
cap_config = model_config.image_captioning_model
qa_config = model_config.question_answering_model
itm_cls = registry.get_model_class(itm_config.arch)
cap_cls = registry.get_model_class(cap_config.arch)
qa_cls = registry.get_model_class(qa_config.arch)
image_question_matching_model = itm_cls.from_config(itm_config)
image_captioning_model = cap_cls.from_config(cap_config)
question_answering_model = qa_cls.from_config(qa_config)
model = cls(image_question_matching_model=image_question_matching_model,
image_captioning_model=image_captioning_model,
question_answering_model=question_answering_model,
offload_model= True if model_config.model_type == '3b' else False,
)
return model |