Spaces:
Sleeping
Sleeping
File size: 23,965 Bytes
e84842d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import random
import spacy
import torch
import torch.nn.functional as F
from transformers import T5ForConditionalGeneration, T5Tokenizer
from lavis.common.dist_utils import download_cached_file
from lavis.common.registry import registry
from lavis.models.base_model import BaseModel
from lavis.models.blip_models.blip_image_text_matching import compute_gradcam
open_pos = ["NOUN", "VERB", "ADJ", "ADV", "NUM"]
@registry.register_model("img2prompt_vqa")
class Img2PromptVQA(BaseModel):
"""
Img2Prompt_VQA model consists of three submodels for zero-shot VQA:
1. Image-questioning matching model
2. Image captioning model
3. Large Language model
Supported model types:
- base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base)
- large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large)
- 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b)
Usage:
>>> from lavis.models import load_model
>>> model = load_model("img2prompt_vqa", "base", is_eval=True)
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/img2prompt-vqa/img2prompt_vqa_base.yaml",
}
def __init__(
self,
image_question_matching_model,
image_captioning_model,
question_generation_model,
question_generation_tokenizer,
offload_model=False,
):
super().__init__()
self.image_question_matching_model = image_question_matching_model
self.image_captioning_model = image_captioning_model
self.question_generation_model = question_generation_model
self.question_generation_tokenizer = question_generation_tokenizer
self.offload_model = offload_model
self.nlp = spacy.load("en_core_web_sm")
def forward_itm(self, samples, block_num=7):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
"""
image = samples["image"]
question = [text.strip("?") for text in samples["text_input"]]
tokenized_text = self.image_question_matching_model.tokenizer(
question, padding="longest", truncation=True, return_tensors="pt"
).to(self.image_question_matching_model.device)
with torch.set_grad_enabled(True):
gradcams, _ = compute_gradcam(
model=self.image_question_matching_model,
visual_input=image,
text_input=question,
tokenized_text=tokenized_text,
block_num=block_num,
)
gradcams = [gradcam_[1] for gradcam_ in gradcams]
samples["gradcams"] = torch.stack(gradcams).reshape(
samples["image"].size(0), -1
)
return samples
def itm_rank(self, image_embeds, image_atts, encoder_input_ids, match_head="itm"):
# breakpoint()
encoder_input_ids = encoder_input_ids.clone()
encoder_input_ids = encoder_input_ids[:, self.prompt_length - 1 :]
text_attention_mask = (encoder_input_ids != self.tokenizer.pad_token_id).long()
if match_head == "itm":
# encoder_input_ids = encoder_input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
output = self.text_encoder(
encoder_input_ids,
attention_mask=text_attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
itm_output = self.itm_head(output.last_hidden_state[:, 0, :])
return itm_output # , mask, token_length
elif match_head == "itc":
encoder_input_ids[:, 0] = self.tokenizer.cls_token_id
text_output = self.text_encoder(
encoder_input_ids,
attention_mask=text_attention_mask,
return_dict=True,
mode="text",
)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text_feat = F.normalize(
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
)
sim = image_feat @ text_feat.t()
return sim
def forward_cap(
self,
samples,
cap_max_length=20,
cap_min_length=0,
top_p=1,
top_k=50,
repetition_penalty=1.0,
num_captions=100,
num_patches=20,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_p (float): The cumulative probability for nucleus sampling.
top_k (float): The number of the highest probability tokens for top-k sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions generated for each image.
num_patches (int): Number of patches sampled for each image.
Returns:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
- text_input (list): A list of strings of length batch_size
- gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
- captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
encoder_out = self.image_captioning_model.forward_encoder(samples)
captions = [[] for _ in range(encoder_out.size(0))]
min_num_captions = 0
while min_num_captions < num_captions:
encoder_out_samples = []
for i in range(num_captions):
patch_id = (
torch.multinomial(
samples["gradcams"].to(self.image_captioning_model.device),
num_patches,
).reshape(encoder_out.size(0), -1)
+ 1
)
patch_id = (
patch_id.sort(dim=1)
.values.unsqueeze(-1)
.expand(-1, -1, encoder_out.size(2))
)
encoder_out_sample = torch.gather(encoder_out, 1, patch_id)
encoder_out_samples.append(encoder_out_sample)
stacked = torch.stack(encoder_out_samples, dim=1)
image_embeds = torch.flatten(
stacked, start_dim=0, end_dim=1
) # (bsz*num_seq, num_patch, dim)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.image_captioning_model.device
)
model_kwargs = {
"encoder_hidden_states": image_embeds,
"encoder_attention_mask": image_atts,
}
prompt = [self.image_captioning_model.prompt] * image_embeds.size(0)
prompt = self.image_captioning_model.tokenizer(
prompt, return_tensors="pt"
).to(self.image_captioning_model.device)
prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id
prompt.input_ids = prompt.input_ids[:, :-1]
decoder_out = self.image_captioning_model.text_decoder.generate(
input_ids=prompt.input_ids,
max_length=cap_max_length,
min_length=cap_min_length,
do_sample=True,
top_p=top_p,
top_k=top_k,
num_return_sequences=1,
eos_token_id=self.image_captioning_model.tokenizer.sep_token_id,
pad_token_id=self.image_captioning_model.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs
)
itm_outputs = self.image_question_matching_model.itm_rank(
image_embeds, image_atts, encoder_input_ids=decoder_out
) # caption filter
outputs = self.image_captioning_model.tokenizer.batch_decode(
decoder_out, skip_special_tokens=True
)
for counter, output in enumerate(outputs):
ind = counter // num_captions
if len(captions[ind]) < num_captions:
caption = output[len(self.image_captioning_model.prompt) :]
overlap_caption = [1 for caps in captions[ind] if caption in caps]
# print(itm_outputs)
if (
len(overlap_caption) == 0 and itm_outputs[counter] >= 0.5
): # image filter
captions[ind].append(caption)
min_num_captions = min([len(i) for i in captions])
samples["captions"] = captions
return samples
def answer_extraction(self, caption, num_question_generation=30):
cap_use = ""
# print(caption)
caption = caption
ans_to_cap_dict = {}
answers = []
for cap_idx, cap in enumerate(caption):
# print(cap)
cap_use += cap
cap = cap.strip().strip(".")
# print(cap)
cap = self.nlp(cap)
for token in cap: # Noun /Verb/Adj//NUM
if token.pos_ in open_pos:
if token.text.lower() not in ans_to_cap_dict:
ans_to_cap_dict[token.text.lower()] = [cap_idx]
else:
if cap_idx not in ans_to_cap_dict[token.text.lower()]:
ans_to_cap_dict[token.text.lower()].append(cap_idx)
answers.append(token.text)
for ent in cap.ents:
if ent.text not in answers:
if ent.text.lower() not in ans_to_cap_dict:
ans_to_cap_dict[ent.text.lower()] = [cap_idx]
else:
if cap_idx not in ans_to_cap_dict[ent.text.lower()]:
ans_to_cap_dict[ent.text.lower()].append(cap_idx)
answers.append(ent.text)
for chunk in cap.noun_chunks:
if len(chunk.text.split()) < 4:
if chunk.text.lower() not in ans_to_cap_dict:
ans_to_cap_dict[chunk.text.lower()] = [cap_idx]
else:
if cap_idx not in ans_to_cap_dict[chunk.text.lower()]:
ans_to_cap_dict[chunk.text.lower()].append(cap_idx)
# print(chunk.text)
answers.append(chunk.text)
answers = sorted(answers, key=answers.count, reverse=True)
real_answers = []
for i in answers:
i = i + "."
if i not in real_answers:
real_answers.append(i)
contexts_for_question_generation = []
answers = []
for ans in real_answers[
:num_question_generation
]: # Generate questions for 30 answers with max frequencies.
contexts_for_question_generation.append(
"answer: %s context: %s." % (ans, cap_use)
)
answers.append(ans)
contexts_for_question_generation.append(
"answer: %s context: %s." % ("yes.", cap_use)
)
answers.append("yes.")
return contexts_for_question_generation, answers, ans_to_cap_dict
def forward_qa_generation(self, samples):
caption = samples["captions"][0]
(
contexts_for_question_generation,
answers,
ans_to_cap_dict,
) = self.answer_extraction(caption)
inputs = self.question_generation_tokenizer(
contexts_for_question_generation,
padding="longest",
truncation=True,
max_length=2048,
return_tensors="pt",
).to(self.device)
question_size = inputs.input_ids.shape[0]
cur_b = 0
true_input_size = 10
outputs_list = []
while cur_b < question_size:
outputs = self.question_generation_model.generate(
input_ids=inputs.input_ids[cur_b : cur_b + true_input_size],
attention_mask=inputs.attention_mask[cur_b : cur_b + true_input_size],
num_beams=3,
max_length=30,
)
questions = self.question_generation_tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
outputs_list += questions
cur_b += true_input_size
questions = outputs_list
samples["questions"] = questions
samples["answers"] = answers
samples["ans_to_cap_dict"] = ans_to_cap_dict
# results.append({"question_id": ques_id, "question":questions,"answer":answers})
return samples
def create_context_prompt(self, samples, num_caps_per_img=30):
ans_dict_queid = samples["ans_to_cap_dict"]
# print(ans_dict_queid)
caption = samples["captions"][0]
answers = samples["answers"]
Context_Prompt = ""
mycontexts_id = []
for idx in range(num_caps_per_img):
cap_id_list = ans_dict_queid.get(
answers[(len(answers) - 1 - idx) % len(answers)][:-1].lower(), [0]
)
for cap_id in cap_id_list:
if cap_id not in mycontexts_id:
Context_Prompt += caption[cap_id]
mycontexts_id.append(cap_id)
break # We just take one cap for each answer
samples["Context_Prompt"] = Context_Prompt
return Context_Prompt
def create_task_prompt(
self, samples, question_type="neural", num_question_per_img=30
):
syn_question_queid = samples["questions"]
syn_ans_queid = samples["answers"]
Task_Prompt = ""
for idx in range(num_question_per_img):
# if config['random_question']:
# qa_idx = random.randint(0, len(syn_question_queid) - 1)
# else:
qa_idx = idx
if (
question_type != "rule" and num_question_per_img > 0 and idx < 1
): ## yes and no questions for vqav2
# Task_Prompt += "Question:"
# Task_Prompt += syn_question_queid_next[-1]
# Task_Prompt += '\n'
# Task_Prompt += "Answer:no\n"
Task_Prompt += "Question:"
Task_Prompt += syn_question_queid[-1]
Task_Prompt += "\n"
Task_Prompt += "Answer:"
Task_Prompt += "yes\n"
Task_Prompt += "Question:Is this a toilet?\n"
Task_Prompt += "Answer:no\n"
if "question_type" == "rule": # Rule-Based Question Generation
Noun_Questions = [
"What item is this in this picture?",
"What item is that in this picture?",
]
Verb_Questions = [
"What action is being done in this picture?",
"Why is this item doing in this picture?",
"Which action is being taken in this picture?",
"What action is item doing in this picture?",
"What action is item performing in this picture?",
]
Adj_Questions = [
"How to describe one item in this picture?",
"What is item's ADJ TYPE in this picture?",
"What is the ADJ TYPE in this picture?",
]
Task_Prompt += "Question:"
doc = self.nlp(syn_ans_queid[(qa_idx) % len(syn_ans_queid)][:-1].lower())
if doc[-1].pos_ == "NOUN":
Task_Prompt += Noun_Questions[
random.randint(0, len(Noun_Questions) - 1)
]
elif doc[-1].pos_ == "VERB":
Task_Prompt += Verb_Questions[
random.randint(0, len(Verb_Questions) - 1)
]
elif doc[-1].pos_ == "ADJ":
Task_Prompt += Adj_Questions[
random.randint(0, len(Adj_Questions) - 1)
]
Task_Prompt += "\n"
Task_Prompt += "Answer:"
Task_Prompt += syn_ans_queid[(qa_idx) % len(syn_ans_queid)][:-1].lower()
Task_Prompt += "\n"
samples["Task_Prompt"] = Task_Prompt
# print(Task_Prompt)
return Task_Prompt
def prompts_construction(
self,
samples,
question_type="neural",
num_caps_per_img=30,
num_question_per_img=30,
):
Prompt = "Please reason the answer of the questions according to the given contexts.\n"
Context_Prompt = self.create_context_prompt(samples, num_caps_per_img)
Task_Prompt = self.create_task_prompt(
samples, question_type, num_question_per_img
)
Img2Prompt = (
Prompt
+ "Contexts:"
+ Context_Prompt
+ "\n"
+ Task_Prompt
+ "Question:"
+ samples["text_input"][0]
+ "\nAnswer:"
)
return Img2Prompt
def prepare_LLM_input(
self,
samples,
num_beams=1,
inference_method="generate",
max_len=20,
min_len=0,
internal_bsz_fid=1,
num_captions=50,
num_captions_fid=1,
cap_max_length=20,
cap_min_length=10,
top_k=50,
top_p=1,
repetition_penalty=1,
num_patches=20,
block_num=7,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
- text_input (str or [str]): String or a list of strings, each string is a question.
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
num_beams (int): Number of beams for beam search. 1 means no beam search.
inference_method (str): Inference method. Must be "generate". The model will generate answers.
max_len (int): Maximum length of generated answers.
min_len (int): Minimum length of generated answers.
internal_bsz_fid (int): Internal batch size when using FiD decoding.
num_captions (int): Number of captions generated for each image.
num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
cap_max_length (int): The maximum length of the caption to be generated.
cap_min_length (int): The minimum length of the caption to be generated.
top_k (float): The number of the highest probability tokens for top-k sampling.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_patches (int): Number of patches sampled for each image.
block_num (int): The index of cross-attention block for gradcam computation.
Returns:
List: A list of strings, each string is an answer.
gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
captions (nested list): A nested list of strings of total length batch_size * num_captions
"""
assert inference_method in [
"generate",
], "Inference method must be 'generate', got {}.".format(inference_method)
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
assert len(samples["text_input"]) == samples["image"].size(
0
), "The number of questions must be equal to the batch size."
samples = self.forward_itm(samples, block_num=block_num)
samples = self.forward_cap(
samples,
cap_max_length=cap_max_length,
cap_min_length=cap_min_length,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_captions=num_captions,
num_patches=num_patches,
)
if self.offload_model:
samples["image"] = samples["image"].to("cpu")
self.image_question_matching_model.to("cpu")
self.image_captioning_model.to("cpu")
torch.cuda.empty_cache()
pred_answers = self.forward_qa(
samples,
num_beams=num_beams,
max_len=max_len,
min_len=min_len,
internal_bsz_fid=internal_bsz_fid,
num_captions=num_captions,
num_captions_fid=num_captions_fid,
)
if self.offload_model:
self.image_question_matching_model.to(self.question_answering_model.device)
self.image_captioning_model.to(self.question_answering_model.device)
return pred_answers, samples["captions"], samples["gradcams"]
@classmethod
def from_config(cls, model_config):
itm_config = model_config.image_question_matching_model
cap_config = model_config.image_captioning_model
itm_cls = registry.get_model_class(itm_config.arch)
cap_cls = registry.get_model_class(cap_config.arch)
image_question_matching_model = itm_cls.from_config(itm_config)
image_captioning_model = cap_cls.from_config(cap_config)
question_generation_tokenizer = T5Tokenizer.from_pretrained(
"google/t5-large-lm-adapt"
)
question_generation_model = T5ForConditionalGeneration.from_pretrained(
"google/t5-large-lm-adapt"
)
cached_file = download_cached_file(
"https://storage.googleapis.com/sfr-vision-language-research/LAVIS/projects/img2prompt/T5_large_QG.pth",
check_hash=False,
progress=True,
)
checkpoint = torch.load(cached_file, map_location="cpu")
state_dict = checkpoint["model"]
question_generation_model.load_state_dict(state_dict)
model = cls(
image_question_matching_model=image_question_matching_model,
image_captioning_model=image_captioning_model,
question_generation_model=question_generation_model,
question_generation_tokenizer=question_generation_tokenizer,
offload_model=False,
)
return model
|