File size: 23,965 Bytes
e84842d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import random

import spacy
import torch
import torch.nn.functional as F
from transformers import T5ForConditionalGeneration, T5Tokenizer

from lavis.common.dist_utils import download_cached_file
from lavis.common.registry import registry
from lavis.models.base_model import BaseModel
from lavis.models.blip_models.blip_image_text_matching import compute_gradcam

open_pos = ["NOUN", "VERB", "ADJ", "ADV", "NUM"]



@registry.register_model("img2prompt_vqa")
class Img2PromptVQA(BaseModel):
    """
    Img2Prompt_VQA model consists of three submodels for zero-shot VQA:
        1. Image-questioning matching model
        2. Image captioning model
        3. Large Language model

    Supported model types:
        - base: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-base)
        - large: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-large)
        - 3b: BLIPITM, BLIPCaption, PNPUnifiedQAv2FiD (t5-3b)

    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("img2prompt_vqa", "base", is_eval=True)
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "base": "configs/models/img2prompt-vqa/img2prompt_vqa_base.yaml",
    }

    def __init__(
        self,
        image_question_matching_model,
        image_captioning_model,
        question_generation_model,
        question_generation_tokenizer,
        offload_model=False,
    ):
        super().__init__()

        self.image_question_matching_model = image_question_matching_model
        self.image_captioning_model = image_captioning_model
        self.question_generation_model = question_generation_model
        self.question_generation_tokenizer = question_generation_tokenizer
        self.offload_model = offload_model
        self.nlp = spacy.load("en_core_web_sm")

    def forward_itm(self, samples, block_num=7):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
            block_num (int): The index of cross-attention block for gradcam computation.

        Returns:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
                - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
        """
        image = samples["image"]
        question = [text.strip("?") for text in samples["text_input"]]
        tokenized_text = self.image_question_matching_model.tokenizer(
            question, padding="longest", truncation=True, return_tensors="pt"
        ).to(self.image_question_matching_model.device)
        with torch.set_grad_enabled(True):
            gradcams, _ = compute_gradcam(
                model=self.image_question_matching_model,
                visual_input=image,
                text_input=question,
                tokenized_text=tokenized_text,
                block_num=block_num,
            )

        gradcams = [gradcam_[1] for gradcam_ in gradcams]
        samples["gradcams"] = torch.stack(gradcams).reshape(
            samples["image"].size(0), -1
        )

        return samples

    def itm_rank(self, image_embeds, image_atts, encoder_input_ids, match_head="itm"):
        # breakpoint()
        encoder_input_ids = encoder_input_ids.clone()
        encoder_input_ids = encoder_input_ids[:, self.prompt_length - 1 :]
        text_attention_mask = (encoder_input_ids != self.tokenizer.pad_token_id).long()

        if match_head == "itm":
            # encoder_input_ids = encoder_input_ids.clone()
            encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
            output = self.text_encoder(
                encoder_input_ids,
                attention_mask=text_attention_mask,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )
            itm_output = self.itm_head(output.last_hidden_state[:, 0, :])
            return itm_output  # , mask, token_length

        elif match_head == "itc":
            encoder_input_ids[:, 0] = self.tokenizer.cls_token_id
            text_output = self.text_encoder(
                encoder_input_ids,
                attention_mask=text_attention_mask,
                return_dict=True,
                mode="text",
            )
            image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
            text_feat = F.normalize(
                self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
            )

            sim = image_feat @ text_feat.t()
            return sim

    def forward_cap(
        self,
        samples,
        cap_max_length=20,
        cap_min_length=0,
        top_p=1,
        top_k=50,
        repetition_penalty=1.0,
        num_captions=100,
        num_patches=20,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
                - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
            cap_max_length (int): The maximum length of the caption to be generated.
            cap_min_length (int): The minimum length of the caption to be generated.
            top_p (float): The cumulative probability for nucleus sampling.
            top_k (float): The number of the highest probability tokens for top-k sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_captions (int): Number of captions generated for each image.
            num_patches (int): Number of patches sampled for each image.

        Returns:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size
                - gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
                - captions (nested list): A nested list of strings of total length batch_size * num_captions
        """
        encoder_out = self.image_captioning_model.forward_encoder(samples)
        captions = [[] for _ in range(encoder_out.size(0))]

        min_num_captions = 0

        while min_num_captions < num_captions:
            encoder_out_samples = []
            for i in range(num_captions):
                patch_id = (
                    torch.multinomial(
                        samples["gradcams"].to(self.image_captioning_model.device),
                        num_patches,
                    ).reshape(encoder_out.size(0), -1)
                    + 1
                )
                patch_id = (
                    patch_id.sort(dim=1)
                    .values.unsqueeze(-1)
                    .expand(-1, -1, encoder_out.size(2))
                )
                encoder_out_sample = torch.gather(encoder_out, 1, patch_id)
                encoder_out_samples.append(encoder_out_sample)

            stacked = torch.stack(encoder_out_samples, dim=1)
            image_embeds = torch.flatten(
                stacked, start_dim=0, end_dim=1
            )  # (bsz*num_seq, num_patch, dim)

            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
                self.image_captioning_model.device
            )
            model_kwargs = {
                "encoder_hidden_states": image_embeds,
                "encoder_attention_mask": image_atts,
            }

            prompt = [self.image_captioning_model.prompt] * image_embeds.size(0)
            prompt = self.image_captioning_model.tokenizer(
                prompt, return_tensors="pt"
            ).to(self.image_captioning_model.device)
            prompt.input_ids[:, 0] = self.image_captioning_model.tokenizer.bos_token_id
            prompt.input_ids = prompt.input_ids[:, :-1]

            decoder_out = self.image_captioning_model.text_decoder.generate(
                input_ids=prompt.input_ids,
                max_length=cap_max_length,
                min_length=cap_min_length,
                do_sample=True,
                top_p=top_p,
                top_k=top_k,
                num_return_sequences=1,
                eos_token_id=self.image_captioning_model.tokenizer.sep_token_id,
                pad_token_id=self.image_captioning_model.tokenizer.pad_token_id,
                repetition_penalty=repetition_penalty,
                **model_kwargs
            )

            itm_outputs = self.image_question_matching_model.itm_rank(
                image_embeds, image_atts, encoder_input_ids=decoder_out
            )  # caption filter

            outputs = self.image_captioning_model.tokenizer.batch_decode(
                decoder_out, skip_special_tokens=True
            )

            for counter, output in enumerate(outputs):
                ind = counter // num_captions
                if len(captions[ind]) < num_captions:
                    caption = output[len(self.image_captioning_model.prompt) :]
                    overlap_caption = [1 for caps in captions[ind] if caption in caps]
                    # print(itm_outputs)
                    if (
                        len(overlap_caption) == 0 and itm_outputs[counter] >= 0.5
                    ):  # image filter
                        captions[ind].append(caption)

            min_num_captions = min([len(i) for i in captions])

        samples["captions"] = captions

        return samples

    def answer_extraction(self, caption, num_question_generation=30):
        cap_use = ""
        # print(caption)
        caption = caption
        ans_to_cap_dict = {}
        answers = []
        for cap_idx, cap in enumerate(caption):
            # print(cap)
            cap_use += cap
            cap = cap.strip().strip(".")
            # print(cap)
            cap = self.nlp(cap)
            for token in cap:  # Noun /Verb/Adj//NUM
                if token.pos_ in open_pos:
                    if token.text.lower() not in ans_to_cap_dict:
                        ans_to_cap_dict[token.text.lower()] = [cap_idx]
                    else:
                        if cap_idx not in ans_to_cap_dict[token.text.lower()]:
                            ans_to_cap_dict[token.text.lower()].append(cap_idx)
                    answers.append(token.text)
            for ent in cap.ents:

                if ent.text not in answers:
                    if ent.text.lower() not in ans_to_cap_dict:
                        ans_to_cap_dict[ent.text.lower()] = [cap_idx]
                    else:
                        if cap_idx not in ans_to_cap_dict[ent.text.lower()]:
                            ans_to_cap_dict[ent.text.lower()].append(cap_idx)
                    answers.append(ent.text)
            for chunk in cap.noun_chunks:
                if len(chunk.text.split()) < 4:
                    if chunk.text.lower() not in ans_to_cap_dict:
                        ans_to_cap_dict[chunk.text.lower()] = [cap_idx]
                    else:
                        if cap_idx not in ans_to_cap_dict[chunk.text.lower()]:
                            ans_to_cap_dict[chunk.text.lower()].append(cap_idx)
                    #                 print(chunk.text)
                    answers.append(chunk.text)
        answers = sorted(answers, key=answers.count, reverse=True)
        real_answers = []
        for i in answers:
            i = i + "."
            if i not in real_answers:
                real_answers.append(i)

        contexts_for_question_generation = []
        answers = []
        for ans in real_answers[
            :num_question_generation
        ]:  # Generate questions for 30 answers with max frequencies.
            contexts_for_question_generation.append(
                "answer: %s  context: %s." % (ans, cap_use)
            )
            answers.append(ans)
        contexts_for_question_generation.append(
            "answer: %s  context: %s." % ("yes.", cap_use)
        )
        answers.append("yes.")
        return contexts_for_question_generation, answers, ans_to_cap_dict

    def forward_qa_generation(self, samples):
        caption = samples["captions"][0]
        (
            contexts_for_question_generation,
            answers,
            ans_to_cap_dict,
        ) = self.answer_extraction(caption)
        inputs = self.question_generation_tokenizer(
            contexts_for_question_generation,
            padding="longest",
            truncation=True,
            max_length=2048,
            return_tensors="pt",
        ).to(self.device)
        question_size = inputs.input_ids.shape[0]
        cur_b = 0
        true_input_size = 10
        outputs_list = []
        while cur_b < question_size:
            outputs = self.question_generation_model.generate(
                input_ids=inputs.input_ids[cur_b : cur_b + true_input_size],
                attention_mask=inputs.attention_mask[cur_b : cur_b + true_input_size],
                num_beams=3,
                max_length=30,
            )
            questions = self.question_generation_tokenizer.batch_decode(
                outputs, skip_special_tokens=True
            )
            outputs_list += questions
            cur_b += true_input_size
        questions = outputs_list
        samples["questions"] = questions
        samples["answers"] = answers
        samples["ans_to_cap_dict"] = ans_to_cap_dict
        # results.append({"question_id": ques_id, "question":questions,"answer":answers})
        return samples

    def create_context_prompt(self, samples, num_caps_per_img=30):
        ans_dict_queid = samples["ans_to_cap_dict"]
        # print(ans_dict_queid)
        caption = samples["captions"][0]
        answers = samples["answers"]
        Context_Prompt = ""
        mycontexts_id = []
        for idx in range(num_caps_per_img):
            cap_id_list = ans_dict_queid.get(
                answers[(len(answers) - 1 - idx) % len(answers)][:-1].lower(), [0]
            )
            for cap_id in cap_id_list:
                if cap_id not in mycontexts_id:
                    Context_Prompt += caption[cap_id]
                    mycontexts_id.append(cap_id)
                    break  # We just take one cap for each answer
        samples["Context_Prompt"] = Context_Prompt
        return Context_Prompt

    def create_task_prompt(
        self, samples, question_type="neural", num_question_per_img=30
    ):
        syn_question_queid = samples["questions"]
        syn_ans_queid = samples["answers"]
        Task_Prompt = ""
        for idx in range(num_question_per_img):
            # if config['random_question']:
            #     qa_idx = random.randint(0, len(syn_question_queid) - 1)
            # else:
            qa_idx = idx
            if (
                question_type != "rule" and num_question_per_img > 0 and idx < 1
            ):  ## yes and no questions for vqav2
                # Task_Prompt += "Question:"
                # Task_Prompt += syn_question_queid_next[-1]
                # Task_Prompt += '\n'
                # Task_Prompt += "Answer:no\n"
                Task_Prompt += "Question:"
                Task_Prompt += syn_question_queid[-1]
                Task_Prompt += "\n"
                Task_Prompt += "Answer:"
                Task_Prompt += "yes\n"
                Task_Prompt += "Question:Is this a toilet?\n"
                Task_Prompt += "Answer:no\n"
            if "question_type" == "rule":  # Rule-Based Question Generation
                Noun_Questions = [
                    "What item is this in this picture?",
                    "What item is that in this picture?",
                ]

                Verb_Questions = [
                    "What action is being done in this picture?",
                    "Why is this item doing in this picture?",
                    "Which action is being taken in this picture?",
                    "What action is item doing in this picture?",
                    "What action is item performing in this picture?",
                ]

                Adj_Questions = [
                    "How to describe one item in this picture?",
                    "What is item's ADJ TYPE in this picture?",
                    "What is the ADJ TYPE in this picture?",
                ]

                Task_Prompt += "Question:"
                doc = self.nlp(syn_ans_queid[(qa_idx) % len(syn_ans_queid)][:-1].lower())
                if doc[-1].pos_ == "NOUN":
                    Task_Prompt += Noun_Questions[
                        random.randint(0, len(Noun_Questions) - 1)
                    ]
                elif doc[-1].pos_ == "VERB":
                    Task_Prompt += Verb_Questions[
                        random.randint(0, len(Verb_Questions) - 1)
                    ]
                elif doc[-1].pos_ == "ADJ":
                    Task_Prompt += Adj_Questions[
                        random.randint(0, len(Adj_Questions) - 1)
                    ]

                Task_Prompt += "\n"

                Task_Prompt += "Answer:"
                Task_Prompt += syn_ans_queid[(qa_idx) % len(syn_ans_queid)][:-1].lower()
                Task_Prompt += "\n"
        samples["Task_Prompt"] = Task_Prompt
        # print(Task_Prompt)
        return Task_Prompt

    def prompts_construction(
        self,
        samples,
        question_type="neural",
        num_caps_per_img=30,
        num_question_per_img=30,
    ):
        Prompt = "Please reason the answer of the questions according to the given contexts.\n"

        Context_Prompt = self.create_context_prompt(samples, num_caps_per_img)

        Task_Prompt = self.create_task_prompt(
            samples, question_type, num_question_per_img
        )

        Img2Prompt = (
            Prompt
            + "Contexts:"
            + Context_Prompt
            + "\n"
            + Task_Prompt
            + "Question:"
            + samples["text_input"][0]
            + "\nAnswer:"
        )
        return Img2Prompt

    def prepare_LLM_input(
        self,
        samples,
        num_beams=1,
        inference_method="generate",
        max_len=20,
        min_len=0,
        internal_bsz_fid=1,
        num_captions=50,
        num_captions_fid=1,
        cap_max_length=20,
        cap_min_length=10,
        top_k=50,
        top_p=1,
        repetition_penalty=1,
        num_patches=20,
        block_num=7,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480.
                - text_input (str or [str]): String or a list of strings, each string is a question.
                                             The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first.
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            inference_method (str): Inference method. Must be "generate". The model will generate answers.
            max_len (int): Maximum length of generated answers.
            min_len (int): Minimum length of generated answers.
            internal_bsz_fid (int): Internal batch size when using FiD decoding.
            num_captions (int): Number of captions generated for each image.
            num_captions_fid (int): Number of captions concatenated with a question during FiD decoding.
            cap_max_length (int): The maximum length of the caption to be generated.
            cap_min_length (int): The minimum length of the caption to be generated.
            top_k (float): The number of the highest probability tokens for top-k sampling.
            top_p (float): The cumulative probability for nucleus sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_patches (int): Number of patches sampled for each image.
            block_num (int): The index of cross-attention block for gradcam computation.

        Returns:
            List: A list of strings, each string is an answer.
            gradcams (torch.Tensor): A tensor of shape (batch_size, H*W)
            captions (nested list): A nested list of strings of total length batch_size * num_captions
        """
        assert inference_method in [
            "generate",
        ], "Inference method must be 'generate', got {}.".format(inference_method)

        if isinstance(samples["text_input"], str):
            samples["text_input"] = [samples["text_input"]]

        assert len(samples["text_input"]) == samples["image"].size(
            0
        ), "The number of questions must be equal to the batch size."

        samples = self.forward_itm(samples, block_num=block_num)

        samples = self.forward_cap(
            samples,
            cap_max_length=cap_max_length,
            cap_min_length=cap_min_length,
            top_k=top_k,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            num_captions=num_captions,
            num_patches=num_patches,
        )

        if self.offload_model:
            samples["image"] = samples["image"].to("cpu")
            self.image_question_matching_model.to("cpu")
            self.image_captioning_model.to("cpu")
        torch.cuda.empty_cache()

        pred_answers = self.forward_qa(
            samples,
            num_beams=num_beams,
            max_len=max_len,
            min_len=min_len,
            internal_bsz_fid=internal_bsz_fid,
            num_captions=num_captions,
            num_captions_fid=num_captions_fid,
        )

        if self.offload_model:
            self.image_question_matching_model.to(self.question_answering_model.device)
            self.image_captioning_model.to(self.question_answering_model.device)

        return pred_answers, samples["captions"], samples["gradcams"]

    @classmethod
    def from_config(cls, model_config):
        itm_config = model_config.image_question_matching_model
        cap_config = model_config.image_captioning_model

        itm_cls = registry.get_model_class(itm_config.arch)
        cap_cls = registry.get_model_class(cap_config.arch)

        image_question_matching_model = itm_cls.from_config(itm_config)
        image_captioning_model = cap_cls.from_config(cap_config)

        question_generation_tokenizer = T5Tokenizer.from_pretrained(
            "google/t5-large-lm-adapt"
        )
        question_generation_model = T5ForConditionalGeneration.from_pretrained(
            "google/t5-large-lm-adapt"
        )
        cached_file = download_cached_file(
            "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/projects/img2prompt/T5_large_QG.pth",
            check_hash=False,
            progress=True,
        )
        checkpoint = torch.load(cached_file, map_location="cpu")
        state_dict = checkpoint["model"]
        question_generation_model.load_state_dict(state_dict)
        model = cls(
            image_question_matching_model=image_question_matching_model,
            image_captioning_model=image_captioning_model,
            question_generation_model=question_generation_model,
            question_generation_tokenizer=question_generation_tokenizer,
            offload_model=False,
        )

        return model