File size: 3,292 Bytes
e84842d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

 Based on https://github.com/mlfoundations/open_clip
"""

from typing import Optional, Sequence, Tuple

import torch
import torch.nn as nn
import torchvision.transforms.functional as F


from torchvision.transforms import (
    Normalize,
    Compose,
    RandomResizedCrop,
    InterpolationMode,
    ToTensor,
    Resize,
    CenterCrop,
)


class ResizeMaxSize(nn.Module):
    def __init__(
        self, max_size, interpolation=InterpolationMode.BICUBIC, fn="max", fill=0
    ):
        super().__init__()
        if not isinstance(max_size, int):
            raise TypeError(f"Size should be int. Got {type(max_size)}")
        self.max_size = max_size
        self.interpolation = interpolation
        self.fn = min if fn == "min" else min
        self.fill = fill

    def forward(self, img):
        if isinstance(img, torch.Tensor):
            height, width = img.shape[:2]
        else:
            width, height = img.size
        scale = self.max_size / float(max(height, width))
        if scale != 1.0:
            new_size = tuple(round(dim * scale) for dim in (height, width))
            img = F.resize(img, new_size, self.interpolation)
            pad_h = self.max_size - new_size[0]
            pad_w = self.max_size - new_size[1]
            img = F.pad(
                img,
                padding=[
                    pad_w // 2,
                    pad_h // 2,
                    pad_w - pad_w // 2,
                    pad_h - pad_h // 2,
                ],
                fill=self.fill,
            )
        return img


def _convert_to_rgb(image):
    return image.convert("RGB")


def image_transform(
    image_size: int,
    is_train: bool,
    mean: Optional[Tuple[float, ...]] = None,
    std: Optional[Tuple[float, ...]] = None,
    resize_longest_max: bool = False,
    fill_color: int = 0,
):
    mean = mean or (0.48145466, 0.4578275, 0.40821073)  # OpenAI dataset mean
    std = std or (0.26862954, 0.26130258, 0.27577711)  # OpenAI dataset std
    if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
        # for square size, pass size as int so that Resize() uses aspect preserving shortest edge
        image_size = image_size[0]

    normalize = Normalize(mean=mean, std=std)
    if is_train:
        return Compose(
            [
                RandomResizedCrop(
                    image_size,
                    scale=(0.9, 1.0),
                    interpolation=InterpolationMode.BICUBIC,
                ),
                _convert_to_rgb,
                ToTensor(),
                normalize,
            ]
        )
    else:
        if resize_longest_max:
            transforms = [ResizeMaxSize(image_size, fill=fill_color)]
        else:
            transforms = [
                Resize(image_size, interpolation=InterpolationMode.BICUBIC),
                CenterCrop(image_size),
            ]
        transforms.extend(
            [
                _convert_to_rgb,
                ToTensor(),
                normalize,
            ]
        )
        return Compose(transforms)