Spaces:
Sleeping
Sleeping
File size: 19,038 Bytes
e84842d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/mlfoundations/open_clip
"""
""" timm model adapter
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
"""
import math
import warnings
from collections import OrderedDict
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch import nn as nn
try:
import timm
from timm.models.layers import Mlp, to_2tuple
# from timm.models.layers.attention_pool2d import RotAttentionPool2d
# from timm.models.layers.attention_pool2d import (
# AttentionPool2d as AbsAttentionPool2d,
# )
except ImportError as e:
timm = None
from lavis.models.clip_models.utils import freeze_batch_norm_2d
class TimmModel(nn.Module):
"""timm model adapter
# FIXME this adapter is a work in progress, may change in ways that break weight compat
"""
def __init__(
self,
model_name,
embed_dim,
image_size=224,
pool="avg",
proj="linear",
drop=0.0,
pretrained=False,
):
super().__init__()
if timm is None:
raise RuntimeError("Please `pip install timm` to use timm models.")
self.image_size = to_2tuple(image_size)
self.trunk = timm.create_model(model_name, pretrained=pretrained)
feat_size = self.trunk.default_cfg.get("pool_size", None)
feature_ndim = 1 if not feat_size else 2
if pool in ("abs_attn", "rot_attn"):
assert feature_ndim == 2
# if attn pooling used, remove both classifier and default pool
self.trunk.reset_classifier(0, global_pool="")
else:
# reset global pool if pool config set, otherwise leave as network default
reset_kwargs = dict(global_pool=pool) if pool else {}
self.trunk.reset_classifier(0, **reset_kwargs)
prev_chs = self.trunk.num_features
head_layers = OrderedDict()
if pool == "abs_attn":
head_layers["pool"] = AttentionPool2d(
prev_chs, feat_size=feat_size, out_features=embed_dim
)
prev_chs = embed_dim
elif pool == "rot_attn":
head_layers["pool"] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
prev_chs = embed_dim
else:
assert proj, "projection layer needed if non-attention pooling is used."
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
if proj == "linear":
head_layers["drop"] = nn.Dropout(drop)
head_layers["proj"] = nn.Linear(prev_chs, embed_dim)
elif proj == "mlp":
head_layers["mlp"] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop)
self.head = nn.Sequential(head_layers)
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
"""lock modules
Args:
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
"""
if not unlocked_groups:
# lock full model
for param in self.trunk.parameters():
param.requires_grad = False
if freeze_bn_stats:
freeze_batch_norm_2d(self.trunk)
else:
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
try:
# FIXME import here until API stable and in an official release
from timm.models.helpers import group_modules, group_parameters
except ImportError:
raise RuntimeError(
"Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`"
)
matcher = self.trunk.group_matcher()
gparams = group_parameters(self.trunk, matcher)
max_layer_id = max(gparams.keys())
max_layer_id = max_layer_id - unlocked_groups
for group_idx in range(max_layer_id + 1):
group = gparams[group_idx]
for param in group:
self.trunk.get_parameter(param).requires_grad = False
if freeze_bn_stats:
gmodules = group_modules(self.trunk, matcher, reverse=True)
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
freeze_batch_norm_2d(self.trunk, gmodules)
def forward(self, x):
x = self.trunk(x)
x = self.head(x)
return x
class RotAttentionPool2d(nn.Module):
"""Attention based 2D feature pooling w/ rotary (relative) pos embedding.
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed.
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from
train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW
"""
def __init__(
self,
in_features: int,
out_features: int = None,
embed_dim: int = None,
num_heads: int = 4,
qkv_bias: bool = True,
):
super().__init__()
embed_dim = embed_dim or in_features
out_features = out_features or in_features
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
self.proj = nn.Linear(embed_dim, out_features)
self.num_heads = num_heads
assert embed_dim % num_heads == 0
self.head_dim = embed_dim // num_heads
self.scale = self.head_dim**-0.5
self.pos_embed = RotaryEmbedding(self.head_dim)
trunc_normal_(self.qkv.weight, std=in_features**-0.5)
nn.init.zeros_(self.qkv.bias)
def forward(self, x):
B, _, H, W = x.shape
N = H * W
x = x.reshape(B, -1, N).permute(0, 2, 1)
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
x = (
self.qkv(x)
.reshape(B, N + 1, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = x[0], x[1], x[2]
qc, q = q[:, :, :1], q[:, :, 1:]
sin_emb, cos_emb = self.pos_embed.get_embed((H, W))
q = apply_rot_embed(q, sin_emb, cos_emb)
q = torch.cat([qc, q], dim=2)
kc, k = k[:, :, :1], k[:, :, 1:]
k = apply_rot_embed(k, sin_emb, cos_emb)
k = torch.cat([kc, k], dim=2)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1)
x = self.proj(x)
return x[:, 0]
class AttentionPool2d(nn.Module):
"""Attention based 2D feature pooling w/ learned (absolute) pos embedding.
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures.
It was based on impl in CLIP by OpenAI
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py
NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network.
"""
def __init__(
self,
in_features: int,
feat_size: Union[int, Tuple[int, int]],
out_features: int = None,
embed_dim: int = None,
num_heads: int = 4,
qkv_bias: bool = True,
):
super().__init__()
embed_dim = embed_dim or in_features
out_features = out_features or in_features
assert embed_dim % num_heads == 0
self.feat_size = to_2tuple(feat_size)
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias)
self.proj = nn.Linear(embed_dim, out_features)
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scale = self.head_dim**-0.5
spatial_dim = self.feat_size[0] * self.feat_size[1]
self.pos_embed = nn.Parameter(torch.zeros(spatial_dim + 1, in_features))
trunc_normal_(self.pos_embed, std=in_features**-0.5)
trunc_normal_(self.qkv.weight, std=in_features**-0.5)
nn.init.zeros_(self.qkv.bias)
def forward(self, x):
B, _, H, W = x.shape
N = H * W
assert self.feat_size[0] == H
assert self.feat_size[1] == W
x = x.reshape(B, -1, N).permute(0, 2, 1)
x = torch.cat([x.mean(1, keepdim=True), x], dim=1)
x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
x = (
self.qkv(x)
.reshape(B, N + 1, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = x[0], x[1], x[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1)
x = self.proj(x)
return x[:, 0]
def pixel_freq_bands(
num_bands: int,
max_freq: float = 224.0,
linear_bands: bool = True,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
):
if linear_bands:
bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=dtype, device=device)
else:
bands = 2 ** torch.linspace(
0, math.log(max_freq, 2) - 1, num_bands, dtype=dtype, device=device
)
return bands * torch.pi
def inv_freq_bands(
num_bands: int,
temperature: float = 100000.0,
step: int = 2,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> torch.Tensor:
inv_freq = 1.0 / (
temperature
** (torch.arange(0, num_bands, step, dtype=dtype, device=device) / num_bands)
)
return inv_freq
def build_sincos2d_pos_embed(
feat_shape: List[int],
dim: int = 64,
temperature: float = 10000.0,
reverse_coord: bool = False,
interleave_sin_cos: bool = False,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> torch.Tensor:
"""
Args:
feat_shape:
dim:
temperature:
reverse_coord: stack grid order W, H instead of H, W
interleave_sin_cos: sin, cos, sin, cos stack instead of sin, sin, cos, cos
dtype:
device:
Returns:
"""
assert (
dim % 4 == 0
), "Embed dimension must be divisible by 4 for sin-cos 2D position embedding"
pos_dim = dim // 4
bands = inv_freq_bands(
pos_dim, temperature=temperature, step=1, dtype=dtype, device=device
)
if reverse_coord:
feat_shape = feat_shape[::-1] # stack W, H instead of H, W
grid = (
torch.stack(
torch.meshgrid(
[torch.arange(s, device=device, dtype=dtype) for s in feat_shape]
)
)
.flatten(1)
.transpose(0, 1)
)
pos2 = grid.unsqueeze(-1) * bands.unsqueeze(0)
# FIXME add support for unflattened spatial dim?
stack_dim = (
2 if interleave_sin_cos else 1
) # stack sin, cos, sin, cos instead of sin sin cos cos
pos_emb = torch.stack([torch.sin(pos2), torch.cos(pos2)], dim=stack_dim).flatten(1)
return pos_emb
def build_fourier_pos_embed(
feat_shape: List[int],
bands: Optional[torch.Tensor] = None,
num_bands: int = 64,
max_res: int = 224,
linear_bands: bool = False,
include_grid: bool = False,
concat_out: bool = True,
in_pixels: bool = True,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> List[torch.Tensor]:
if bands is None:
if in_pixels:
bands = pixel_freq_bands(
num_bands,
float(max_res),
linear_bands=linear_bands,
dtype=dtype,
device=device,
)
else:
bands = inv_freq_bands(num_bands, step=1, dtype=dtype, device=device)
else:
if device is None:
device = bands.device
if dtype is None:
dtype = bands.dtype
if in_pixels:
grid = torch.stack(
torch.meshgrid(
[
torch.linspace(-1.0, 1.0, steps=s, device=device, dtype=dtype)
for s in feat_shape
]
),
dim=-1,
)
else:
grid = torch.stack(
torch.meshgrid(
[torch.arange(s, device=device, dtype=dtype) for s in feat_shape]
),
dim=-1,
)
grid = grid.unsqueeze(-1)
pos = grid * bands
pos_sin, pos_cos = pos.sin(), pos.cos()
out = (grid, pos_sin, pos_cos) if include_grid else (pos_sin, pos_cos)
# FIXME torchscript doesn't like multiple return types, probably need to always cat?
if concat_out:
out = torch.cat(out, dim=-1)
return out
class FourierEmbed(nn.Module):
def __init__(
self,
max_res: int = 224,
num_bands: int = 64,
concat_grid=True,
keep_spatial=False,
):
super().__init__()
self.max_res = max_res
self.num_bands = num_bands
self.concat_grid = concat_grid
self.keep_spatial = keep_spatial
self.register_buffer(
"bands", pixel_freq_bands(max_res, num_bands), persistent=False
)
def forward(self, x):
B, C = x.shape[:2]
feat_shape = x.shape[2:]
emb = build_fourier_pos_embed(
feat_shape,
self.bands,
include_grid=self.concat_grid,
dtype=x.dtype,
device=x.device,
)
emb = emb.transpose(-1, -2).flatten(len(feat_shape))
batch_expand = (B,) + (-1,) * (x.ndim - 1)
# FIXME support nD
if self.keep_spatial:
x = torch.cat(
[x, emb.unsqueeze(0).expand(batch_expand).permute(0, 3, 1, 2)], dim=1
)
else:
x = torch.cat(
[x.permute(0, 2, 3, 1), emb.unsqueeze(0).expand(batch_expand)], dim=-1
)
x = x.reshape(B, feat_shape.numel(), -1)
return x
def rot(x):
return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)
def apply_rot_embed(x: torch.Tensor, sin_emb, cos_emb):
return x * cos_emb + rot(x) * sin_emb
def apply_rot_embed_list(x: List[torch.Tensor], sin_emb, cos_emb):
if isinstance(x, torch.Tensor):
x = [x]
return [t * cos_emb + rot(t) * sin_emb for t in x]
def apply_rot_embed_split(x: torch.Tensor, emb):
split = emb.shape[-1] // 2
return x * emb[:, :split] + rot(x) * emb[:, split:]
def build_rotary_pos_embed(
feat_shape: List[int],
bands: Optional[torch.Tensor] = None,
dim: int = 64,
max_freq: float = 224,
linear_bands: bool = False,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
):
"""
NOTE: shape arg should include spatial dim only
"""
feat_shape = torch.Size(feat_shape)
sin_emb, cos_emb = build_fourier_pos_embed(
feat_shape,
bands=bands,
num_bands=dim // 4,
max_res=max_freq,
linear_bands=linear_bands,
concat_out=False,
device=device,
dtype=dtype,
)
N = feat_shape.numel()
sin_emb = sin_emb.reshape(N, -1).repeat_interleave(2, -1)
cos_emb = cos_emb.reshape(N, -1).repeat_interleave(2, -1)
return sin_emb, cos_emb
class RotaryEmbedding(nn.Module):
"""Rotary position embedding
NOTE: This is my initial attempt at impl rotary embedding for spatial use, it has not
been well tested, and will likely change. It will be moved to its own file.
The following impl/resources were referenced for this impl:
* https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
* https://blog.eleuther.ai/rotary-embeddings/
"""
def __init__(self, dim, max_res=224, linear_bands: bool = False):
super().__init__()
self.dim = dim
self.register_buffer(
"bands",
pixel_freq_bands(dim // 4, max_res, linear_bands=linear_bands),
persistent=False,
)
def get_embed(self, shape: List[int]):
return build_rotary_pos_embed(shape, self.bands)
def forward(self, x):
# assuming channel-first tensor where spatial dim are >= 2
sin_emb, cos_emb = self.get_embed(x.shape[2:])
return apply_rot_embed(x, sin_emb, cos_emb)
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|