Spaces:
Sleeping
Sleeping
File size: 8,029 Bytes
e84842d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
from omegaconf import OmegaConf
from lavis.common.registry import registry
from lavis.models.base_model import BaseModel
from lavis.models.albef_models.albef_classification import AlbefClassification
from lavis.models.albef_models.albef_feature_extractor import AlbefFeatureExtractor
from lavis.models.albef_models.albef_nlvr import AlbefNLVR
from lavis.models.albef_models.albef_pretrain import AlbefPretrain
from lavis.models.albef_models.albef_retrieval import AlbefRetrieval
from lavis.models.albef_models.albef_vqa import AlbefVQA
from lavis.models.alpro_models.alpro_qa import AlproQA
from lavis.models.alpro_models.alpro_retrieval import AlproRetrieval
from lavis.models.blip_models.blip import BlipBase
from lavis.models.blip_models.blip_caption import BlipCaption
from lavis.models.blip_models.blip_classification import BlipClassification
from lavis.models.blip_models.blip_feature_extractor import BlipFeatureExtractor
from lavis.models.blip_models.blip_image_text_matching import BlipITM
from lavis.models.blip_models.blip_nlvr import BlipNLVR
from lavis.models.blip_models.blip_pretrain import BlipPretrain
from lavis.models.blip_models.blip_retrieval import BlipRetrieval
from lavis.models.blip_models.blip_vqa import BlipVQA
from lavis.models.blip2_models.blip2 import Blip2Base
from lavis.models.blip2_models.blip2_opt import Blip2OPT
from lavis.models.blip2_models.blip2_t5 import Blip2T5
from lavis.models.blip2_models.blip2_qformer import Blip2Qformer
from lavis.models.blip2_models.blip2_image_text_matching import Blip2ITM
from lavis.models.pnp_vqa_models.pnp_vqa import PNPVQA
from lavis.models.pnp_vqa_models.pnp_unifiedqav2_fid import PNPUnifiedQAv2FiD
from lavis.models.img2prompt_models.img2prompt_vqa import Img2PromptVQA
from lavis.models.med import XBertLMHeadDecoder
from lavis.models.vit import VisionTransformerEncoder
from lavis.models.clip_models.model import CLIP
from lavis.models.gpt_models.gpt_dialogue import GPTDialogue
from lavis.processors.base_processor import BaseProcessor
__all__ = [
"load_model",
"AlbefClassification",
"AlbefFeatureExtractor",
"AlbefNLVR",
"AlbefVQA",
"AlbefPretrain",
"AlbefRetrieval",
"AlproQA",
"AlproRetrieval",
"BaseModel",
"BlipBase",
"BlipFeatureExtractor",
"BlipCaption",
"BlipClassification",
"BlipITM",
"BlipNLVR",
"BlipPretrain",
"BlipRetrieval",
"BlipVQA",
"Blip2Qformer",
"Blip2Base",
"Blip2ITM",
"Blip2OPT",
"Blip2T5",
"PNPVQA",
"Img2PromptVQA",
"PNPUnifiedQAv2FiD",
"CLIP",
"VisionTransformerEncoder",
"XBertLMHeadDecoder",
"GPTDialogue",
]
def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None):
"""
Load supported models.
To list all available models and types in registry:
>>> from lavis.models import model_zoo
>>> print(model_zoo)
Args:
name (str): name of the model.
model_type (str): type of the model.
is_eval (bool): whether the model is in eval mode. Default: False.
device (str): device to use. Default: "cpu".
checkpoint (str): path or to checkpoint. Default: None.
Note that expecting the checkpoint to have the same keys in state_dict as the model.
Returns:
model (torch.nn.Module): model.
"""
model = registry.get_model_class(name).from_pretrained(model_type=model_type)
if checkpoint is not None:
model.load_checkpoint(checkpoint)
if is_eval:
model.eval()
if device == "cpu":
model = model.float()
return model.to(device)
def load_preprocess(config):
"""
Load preprocessor configs and construct preprocessors.
If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing.
Args:
config (dict): preprocessor configs.
Returns:
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
Key is "train" or "eval" for processors used in training and evaluation respectively.
"""
def _build_proc_from_cfg(cfg):
return (
registry.get_processor_class(cfg.name).from_config(cfg)
if cfg is not None
else BaseProcessor()
)
vis_processors = dict()
txt_processors = dict()
vis_proc_cfg = config.get("vis_processor")
txt_proc_cfg = config.get("text_processor")
if vis_proc_cfg is not None:
vis_train_cfg = vis_proc_cfg.get("train")
vis_eval_cfg = vis_proc_cfg.get("eval")
else:
vis_train_cfg = None
vis_eval_cfg = None
vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg)
vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg)
if txt_proc_cfg is not None:
txt_train_cfg = txt_proc_cfg.get("train")
txt_eval_cfg = txt_proc_cfg.get("eval")
else:
txt_train_cfg = None
txt_eval_cfg = None
txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg)
txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg)
return vis_processors, txt_processors
def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"):
"""
Load model and its related preprocessors.
List all available models and types in registry:
>>> from lavis.models import model_zoo
>>> print(model_zoo)
Args:
name (str): name of the model.
model_type (str): type of the model.
is_eval (bool): whether the model is in eval mode. Default: False.
device (str): device to use. Default: "cpu".
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
model_cls = registry.get_model_class(name)
# load model
model = model_cls.from_pretrained(model_type=model_type)
if is_eval:
model.eval()
# load preprocess
cfg = OmegaConf.load(model_cls.default_config_path(model_type))
if cfg is not None:
preprocess_cfg = cfg.preprocess
vis_processors, txt_processors = load_preprocess(preprocess_cfg)
else:
vis_processors, txt_processors = None, None
logging.info(
f"""No default preprocess for model {name} ({model_type}).
This can happen if the model is not finetuned on downstream datasets,
or it is not intended for direct use without finetuning.
"""
)
if device == "cpu" or device == torch.device("cpu"):
model = model.float()
return model.to(device), vis_processors, txt_processors
class ModelZoo:
"""
A utility class to create string representation of available model architectures and types.
>>> from lavis.models import model_zoo
>>> # list all available models
>>> print(model_zoo)
>>> # show total number of models
>>> print(len(model_zoo))
"""
def __init__(self) -> None:
self.model_zoo = {
k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys())
for k, v in registry.mapping["model_name_mapping"].items()
}
def __str__(self) -> str:
return (
"=" * 50
+ "\n"
+ f"{'Architectures':<30} {'Types'}\n"
+ "=" * 50
+ "\n"
+ "\n".join(
[
f"{name:<30} {', '.join(types)}"
for name, types in self.model_zoo.items()
]
)
)
def __iter__(self):
return iter(self.model_zoo.items())
def __len__(self):
return sum([len(v) for v in self.model_zoo.values()])
model_zoo = ModelZoo()
|