File size: 7,444 Bytes
d9272c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.models.blip_models.blip import BlipBase
from torch import nn
from lavis.models.med import XBertEncoder

from lavis.models.vit import VisionTransformerEncoder


@registry.register_model("blip_image_text_matching")
class BlipITM(BlipBase):
    """
    BLIP Image-Text Matching (ITM) model.

    Supported model types:
        - base: fine-tuned BLIP retrieval weights on COCO dataset (Karpathy split).
        - large: fine-tuned BLIP retrieval weights on COCO dataset (Karpathy split).

    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip_image_text_matching", "base")
        >>> model = load_model("blip_image_text_matching", "large")
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "base": "configs/models/blip_itm_base.yaml",
        "large": "configs/models/blip_itm_large.yaml",
    }

    def __init__(self, image_encoder, text_encoder, embed_dim=256, max_txt_len=35):
        super().__init__()

        self.tokenizer = self.init_tokenizer()

        self.text_encoder = text_encoder

        self.visual_encoder = image_encoder

        self.max_txt_len = max_txt_len

        # creating projection layers for ITC
        text_width = text_encoder.config.hidden_size
        vision_width = image_encoder.vision_width

        self.vision_proj = nn.Linear(vision_width, embed_dim)
        self.text_proj = nn.Linear(text_width, embed_dim)

        self.itm_head = nn.Linear(text_width, 2)

    def forward(self, samples, match_head="itm"):
        image = samples["image"]
        caption = samples["text_input"]

        image_embeds = self.visual_encoder.forward_features(image)
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            image.device
        )

        text = self.tokenizer(
            caption,
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            return_tensors="pt",
        ).to(image.device)
        if match_head == "itm":
            encoder_input_ids = text.input_ids.clone()
            encoder_input_ids[:, 0] = self.tokenizer.enc_token_id  # extra code
            output = self.text_encoder(
                encoder_input_ids,
                attention_mask=text.attention_mask,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )
            itm_output = self.itm_head(output.last_hidden_state[:, 0, :])
            return itm_output

        elif match_head == "itc":
            text_output = self.text_encoder(
                text.input_ids,
                attention_mask=text.attention_mask,
                return_dict=True,
                mode="text",
            )
            image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
            text_feat = F.normalize(
                self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
            )

            sim = image_feat @ text_feat.t()
            return sim
    def itm_rank(self, image_embeds, image_atts, encoder_input_ids, match_head='itm'):
        # breakpoint()
        encoder_input_ids = encoder_input_ids.clone()
        encoder_input_ids = encoder_input_ids[:, 3:]
        text_attention_mask = (encoder_input_ids != self.tokenizer.pad_token_id).long()

        if match_head == 'itm':
            # encoder_input_ids = encoder_input_ids.clone()
            encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
            output = self.text_encoder(encoder_input_ids,
                                       attention_mask=text_attention_mask,
                                       encoder_hidden_states=image_embeds,
                                       encoder_attention_mask=image_atts,
                                       return_dict=True,
                                       )
            # print(output.last_hidden_state.shape)
            itm_output = self.itm_head(output.last_hidden_state[:, 0, :])
            itm_output = F.softmax(itm_output, dim=1)[:,1]
            return itm_output #, mask, token_length

        elif match_head == 'itc':
            encoder_input_ids[:, 0] = self.tokenizer.cls_token_id
            text_output = self.text_encoder(encoder_input_ids, attention_mask=text_attention_mask,
                                            return_dict=True, mode='text')
            image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
            text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1)

            sim = image_feat @ text_feat.t()
            return sim

    @classmethod
    def from_config(cls, cfg=None):
        image_encoder = VisionTransformerEncoder.from_config(cfg)
        text_encoder = XBertEncoder.from_config(cfg)

        embed_dim = cfg.get("embed_dim", 256)
        max_txt_len = cfg.get("max_txt_len", 35)

        model = cls(
            image_encoder=image_encoder,
            text_encoder=text_encoder,
            embed_dim=embed_dim,
            max_txt_len=max_txt_len,
        )

        model.load_checkpoint_from_config(cfg)

        return model


def compute_gradcam(model, visual_input, text_input, tokenized_text, block_num=6):
    model.text_encoder.base_model.base_model.encoder.layer[
        block_num
    ].crossattention.self.save_attention = True

    output = model({"image": visual_input, "text_input": text_input}, match_head="itm")
    loss = output[:, 1].sum()

    model.zero_grad()
    loss.backward()
    with torch.no_grad():
        mask = tokenized_text.attention_mask.view(
            tokenized_text.attention_mask.size(0), 1, -1, 1, 1
        )  # (bsz,1,token_len, 1,1)
        token_length = tokenized_text.attention_mask.sum(dim=-1) - 2
        token_length = token_length.cpu()
        # grads and cams [bsz, num_head, seq_len, image_patch]
        grads = model.text_encoder.base_model.base_model.encoder.layer[
            block_num
        ].crossattention.self.get_attn_gradients()
        cams = model.text_encoder.base_model.base_model.encoder.layer[
            block_num
        ].crossattention.self.get_attention_map()

        # assume using vit with 576 num image patch
        cams = cams[:, :, :, 1:].reshape(visual_input.size(0), 12, -1, 24, 24) * mask
        grads = (
            grads[:, :, :, 1:].clamp(0).reshape(visual_input.size(0), 12, -1, 24, 24)
            * mask
        )

        gradcams = cams * grads
        gradcam_list = []

        for ind in range(visual_input.size(0)):
            token_length_ = token_length[ind]
            gradcam = gradcams[ind].mean(0).cpu().detach()
            # [enc token gradcam, average gradcam across token, gradcam for individual token]
            gradcam = torch.cat(
                (
                    gradcam[0:1, :],
                    gradcam[1 : token_length_ + 1, :].sum(dim=0, keepdim=True)
                    / token_length_,
                    gradcam[1:, :],
                )
            )
            gradcam_list.append(gradcam)
            
    return gradcam_list, output