Spaces:
Sleeping
Sleeping
File size: 7,902 Bytes
d9272c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import warnings
import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.models.blip_models.blip import BlipBase
from lavis.models.blip_models.blip_outputs import BlipOutputFeatures
from lavis.models.med import XBertEncoder
from lavis.models.vit import VisionTransformerEncoder
from torch import nn
@registry.register_model("blip_feature_extractor")
class BlipFeatureExtractor(BlipBase):
"""
Class for BLIP feature extractor.
Supported model types:
- base: BLIP base model with pre-trained weights from capfilt by BLIP large model.
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip_feature_extractor", "base")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/blip_feature_extractor_base.yaml",
# "large": "configs/models/blip_feature_extractor_large.yaml",
}
def __init__(self, image_encoder, text_encoder, embed_dim, max_txt_len=40):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
# creating projection layers for ITC
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.max_txt_len = max_txt_len
self.temp = nn.Parameter(0.07 * torch.ones([]))
@torch.no_grad()
def extract_features(self, samples, mode="multimodal"):
"""
Extract features for multimodal or unimodal samples.
Args:
samples (dict): A dictionary of samples, containing the following keys:
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image.
Raw images should be preprocessed before being passed to feature extractor.
- text_input (list): A list of strings containing the text, length B.
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image".
If "multimodal", return image features and multimodal features;
if "text", return text features;
if "image", return image features.
Default: "multimodal".
Returns:
BlipOutputFeatures: A BlipOutputFeatures object containing the features.
See lavis/models/blip_models/blip_outputs.py for more details.
Examples:
```python
>>> from PIL import Image
>>> from lavis.models import load_model_and_preprocess
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
>>> caption = "a large fountain spewing water into the air"
>>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_feature_extractor", is_eval=True)
>>> image = vis_processors["eval"](raw_image).unsqueeze(0)
>>> text_input = txt_processors["eval"](caption)
>>> sample = {"image": image, "text_input": [text_input]}
>>> features_multimodal = model.extract_features(sample)
>>> features_multimodal.keys()
odict_keys(['image_embeds', 'multimodal_embeds'])
>>> features_multimodal.image_embeds.shape
torch.Size([1, 197, 768])
>>> features_multimodal.multimodal_embeds.shape
torch.Size([1, 12, 768])
>>> features_text = model.extract_features(sample, mode="text")
>>> features_text.keys()
odict_keys(['text_embeds', 'text_features'])
>>> features_text.text_embeds.shape
torch.Size([1, 12, 768])
>>> features_text.text_features.shape
torch.Size([1, 12, 256])
>>> features_image = model.extract_features(sample, mode="image")
>>> features_image.keys()
odict_keys(['image_embeds', 'image_features'])
>>> features_image.image_embeds.shape
torch.Size([1, 197, 768])
>>> features_image.image_features.shape
torch.Size([1, 197, 256])
```
"""
image = samples.get("image")
caption = samples.get("text_input")
# assert mode is one of "image", "text", "multimodal"
assert mode in [
"image",
"text",
"multimodal",
], "mode must be one of 'image', 'text', 'multimodal'"
# initalize output
image_embeds, text_embeds, multimodal_embeds = None, None, None
image_features, text_features = None, None
if mode == "image":
assert (
image is not None
), "Image is not provided for mode 'image' or 'multimodal'"
# return image features
image_embeds = self.visual_encoder.forward_features(image)
image_features = self.vision_proj(image_embeds)
image_features = F.normalize(image_features, dim=-1)
elif mode == "text":
assert (
caption is not None
), "text input is None for mode 'text' or 'multimodal'"
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
# return text features
text_output = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
text_features = self.text_proj(text_embeds)
text_features = F.normalize(text_features, dim=-1)
elif mode == "multimodal":
# return multimodel features
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
text = self.tokenizer(caption, return_tensors="pt", padding=True).to(
self.device
)
text.input_ids[:, 0] = self.tokenizer.enc_token_id
output = self.text_encoder(
text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
multimodal_embeds = output.last_hidden_state
return BlipOutputFeatures(
image_embeds=image_embeds,
image_embeds_proj=image_features,
text_embeds=text_embeds,
text_embeds_proj=text_features,
multimodal_embeds=multimodal_embeds,
)
@classmethod
def from_config(cls, cfg=None):
# set from_pretrained=True to load weights for 'bert-base-uncased'
image_encoder = VisionTransformerEncoder.from_config(cfg)
text_encoder = XBertEncoder.from_config(cfg)
embed_dim = cfg.get("embed_dim", 256)
max_txt_len = cfg.get("max_txt_len", 30)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
embed_dim=embed_dim,
max_txt_len=max_txt_len,
)
# load pre-trained weights
pretrain_path = cfg.get("pretrained", None)
if pretrain_path is not None:
msg = model.load_from_pretrained(url_or_filename=pretrain_path)
else:
warnings.warn("No pretrained weights are loaded.")
return model
|