File size: 5,773 Bytes
d9272c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

from copy import deepcopy

import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.models.base_model import MomentumDistilationMixin
from lavis.models.blip_models.blip import BlipBase
from lavis.models.blip_models.blip_outputs import (
    BlipIntermediateOutput,
    BlipOutputWithLogits,
)
from lavis.models.med import XBertEncoder
from lavis.models.vit import VisionTransformerEncoder
from torch import nn


@registry.register_model("blip_classification")
class BlipClassification(BlipBase, MomentumDistilationMixin):
    PRETRAINED_MODEL_CONFIG_DICT = {
        "base": "configs/models/blip_classification_base.yaml",
    }

    def __init__(
        self,
        image_encoder,
        text_encoder,
        num_classes,
        momentum=0.995,
        alpha=0.4,
        max_txt_len=40,
        use_distill=True,
    ):
        super().__init__()

        self.tokenizer = self.init_tokenizer()

        self.use_distill = use_distill

        self.visual_encoder = image_encoder
        self.text_encoder = text_encoder

        hidden_size = text_encoder.config.hidden_size
        self.cls_head = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, num_classes),
        )

        if self.use_distill:
            self.visual_encoder_m = deepcopy(self.visual_encoder)
            self.text_encoder_m = deepcopy(self.text_encoder)
            self.cls_head_m = deepcopy(self.cls_head)

            self.momentum = momentum
            self.alpha = alpha

            self.model_pairs = [
                [self.visual_encoder, self.visual_encoder_m],
                [self.text_encoder, self.text_encoder_m],
                [self.cls_head, self.cls_head_m],
            ]

            self.copy_params()

        self.max_txt_len = max_txt_len

    def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
        return min(1, (epoch * num_iters_per_epoch + iters) / num_iters_per_epoch)

    def forward(self, samples, is_train=True):
        sentences = samples["text_input"]
        sentences = self.tokenizer(
            sentences,
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            return_tensors="pt",
        ).to(self.device)
        samples.update({"tokenized_text": sentences})

        targets = samples["label"]

        image_embeds = self.visual_encoder.forward_features(samples["image"])
        encoder_output = self.text_encoder.forward_automask(
            samples["tokenized_text"], image_embeds
        )

        prediction = self.cls_head(encoder_output.last_hidden_state[:, 0, :])

        if is_train:
            if self.use_distill:
                with torch.no_grad():
                    self._momentum_update()

                    image_embeds_m = self.visual_encoder_m(samples["image"])
                    encoder_output_m = self.text_encoder_m.forward_automask(
                        samples["tokenized_text"], image_embeds_m
                    )

                    prediction_m = self.cls_head_m(
                        encoder_output_m.last_hidden_state[:, 0, :]
                    )

                alpha = self.alpha * self._rampup_factor(
                    epoch=samples["epoch"],
                    iters=samples["iters"],
                    num_iters_per_epoch=samples["num_iters_per_epoch"],
                )

                loss = (1 - alpha) * F.cross_entropy(
                    prediction, targets
                ) - alpha * torch.sum(
                    F.log_softmax(prediction, dim=1) * F.softmax(prediction_m, dim=1),
                    dim=1,
                ).mean()
            else:
                loss = F.cross_entropy(prediction, targets)

            # return {"loss": loss}
            return BlipOutputWithLogits(
                loss=loss,
                intermediate_output=BlipIntermediateOutput(
                    image_embeds=image_embeds,
                    image_embeds_m=image_embeds_m,
                    encoder_output=encoder_output,
                    encoder_output_m=encoder_output_m,
                ),
                logits=prediction,
                logits_m=prediction_m,
            )

        else:
            return {"predictions": prediction, "targets": targets}

    def predict(self, samples):
        output = self.forward(samples, is_train=False)
        return output

    @classmethod
    def from_config(cls, cfg=None):
        image_encoder = VisionTransformerEncoder.from_config(cfg)

        # text encoder + multimodal encoder
        text_encoder = XBertEncoder.from_config(cfg)
        use_distill = cfg.get("use_distill", True)
        momentum = cfg.get("momentum", 0.995)
        num_classes = cfg.get("num_classes", -1)
        alpha = cfg.get("alpha", 0.4)
        max_txt_len = cfg.get("max_txt_len", 40)

        assert num_classes > 1, "Invalid number of classes provided, found {}".format(
            num_classes
        )

        model = cls(
            image_encoder=image_encoder,
            text_encoder=text_encoder,
            use_distill=use_distill,
            alpha=alpha,
            num_classes=num_classes,
            momentum=momentum,
            max_txt_len=max_txt_len,
        )

        # load pre-trained weights
        pretrain_path = cfg.get("pretrained", None)
        if pretrain_path is not None:
            msg = model.load_from_pretrained(url_or_filename=pretrain_path)

        return model