File size: 8,732 Bytes
d9272c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import torch
from lavis.common.registry import registry

from lavis.models.blip_models.blip import BlipBase
from lavis.models.blip_models.blip_outputs import (
    BlipOutput,
    BlipIntermediateOutput,
)
from lavis.models.med import XBertLMHeadDecoder
from lavis.models.vit import VisionTransformerEncoder


@registry.register_model("blip_caption")
class BlipCaption(BlipBase):
    """
    BLIP captioning model.

    Supported model types:
        - base_coco: fine-tuned BLIP base model on COCO caption dataset (Karparthy split).
        - large_coco: fine-tuned BLIP large model on COCO caption dataset (Karparthy split).

    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip_caption", "base_coco")
        >>> model = load_model("blip_caption", "large_coco")
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "base_coco": "configs/models/blip_caption_base_coco.yaml",
        "large_coco": "configs/models/blip_caption_large_coco.yaml",
    }

    def __init__(self, image_encoder, text_decoder, prompt=None, max_txt_len=40):
        super().__init__()

        self.tokenizer = self.init_tokenizer()

        self.visual_encoder = image_encoder
        self.text_decoder = text_decoder

        self.prompt = prompt
        self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1

        self.max_txt_len = max_txt_len

    def forward_encoder(self, samples):
        image_embeds = self.visual_encoder.forward_features(samples["image"])
        return image_embeds

    def forward_decoder(self, samples, image_embeds):
        # prepare inputs for forwarding decoder
        raw_text = samples["text_input"]
        text = self.tokenizer(
            raw_text,
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            return_tensors="pt",
        ).to(self.device)
        text.input_ids[:, 0] = self.tokenizer.bos_token_id

        # prepare targets for forwarding decoder
        decoder_targets = text.input_ids.masked_fill(
            text.input_ids == self.tokenizer.pad_token_id, -100
        )
        decoder_targets[:, : self.prompt_length] = -100

        # forward decoder
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            self.device
        )
        decoder_output = self.text_decoder(
            input_ids=text.input_ids,
            attention_mask=text.attention_mask,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            labels=decoder_targets,
            return_dict=True,
        )

        return decoder_output, decoder_targets

    def forward(self, samples):
        r"""
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - text_input (list): A list of strings of length batch_size.
        Returns:
            output (BlipOutput): A BlipOutput object containing the following
                attributes:
                - loss (torch.Tensor): A scalar tensor containing the total loss. For BlipCaption, this is the same as the LM loss.
                - loss_lm (torch.Tensor): A scalar tensor containing the LM loss.
                - intermediate_outputs (BlipIntermediateOutput): A BlipIntermediateOutput object containing intermediate outputs.
                  see :class:`lavis.models.blip_models.blip_outputs.BlipOutput` for more details.

        Example:
        ```python
        >>> from PIL import Image
        >>> from lavis.models import load_model_and_preprocess
        >>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_caption")
        >>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
        >>> image = vis_processors["eval"](raw_image).unsqueeze(0)
        >>> text_input = ["a large statue of a person spraying water from a fountain"]
        >>> samples = {"image": image, "text_input": text_input}
        >>> output = model(samples)
        >>> output.keys()
        odict_keys(['intermediate_output', 'loss', 'loss_lm'])
        >>> output.intermediate_output.image_embeds.shape
        torch.Size([1, 577, 768])
        >>> output.intermediate_output.decoder_labels.shape
        torch.Size([1, 13])
        ```"""

        image_embeds = self.forward_encoder(samples)
        decoder_output, decoder_targets = self.forward_decoder(samples, image_embeds)

        # return decoder_out
        return BlipOutput(
            loss=decoder_output.loss,
            loss_lm=decoder_output.loss,
            intermediate_output=BlipIntermediateOutput(
                image_embeds=image_embeds,
                decoder_output=decoder_output,
                decoder_labels=decoder_targets,
            ),
        )

    def generate(
        self,
        samples,
        use_nucleus_sampling=False,
        num_beams=3,
        max_length=30,
        min_length=10,
        top_p=0.9,
        repetition_penalty=1.0,
        num_captions=1,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
            use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            max_length (int): The maximum length of the sequence to be generated.
            min_length (int): The minimum length of the sequence to be generated.
            top_p (float): The cumulative probability for nucleus sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_captions (int): Number of captions to be generated for each image.
        Returns:
            captions (list): A list of strings of length batch_size * num_captions.

        Example:
        ```python
        >>> from PIL import Image
        >>> from lavis.models import load_model_and_preprocess
        >>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_caption")
        >>> raw_image = Image.open("docs/data/merlion.png").convert("RGB")
        >>> image = vis_processors["eval"](raw_image).unsqueeze(0)
        >>> samples = {"image": image}
        >>> captions = model.generate(samples)
        >>> captions
        ['a large statue of a person spraying water from a fountain']
        >>> captions = model.generate(samples, use_nucleus_sampling=True, num_captions=3)
        >>> captions # example output, results may vary due to randomness
        ['singapore showing the view of some building',
        'the singapore harbor in twilight, as the weather is going down',
        'the famous singapore fountain at sunset']
        """
        # prepare inputs for decoder generation.
        encoder_out = self.forward_encoder(samples)
        image_embeds = torch.repeat_interleave(encoder_out, num_captions, 0)

        prompt = [self.prompt] * image_embeds.size(0)
        prompt = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        prompt.input_ids[:, 0] = self.tokenizer.bos_token_id
        prompt.input_ids = prompt.input_ids[:, :-1]

        # get decoded text
        decoder_out = self.text_decoder.generate_from_encoder(
            tokenized_prompt=prompt,
            visual_embeds=image_embeds,
            sep_token_id=self.tokenizer.sep_token_id,
            pad_token_id=self.tokenizer.pad_token_id,
            use_nucleus_sampling=use_nucleus_sampling,
            num_beams=num_beams,
            max_length=max_length,
            min_length=min_length,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
        )

        outputs = self.tokenizer.batch_decode(decoder_out, skip_special_tokens=True)
        captions = [output[len(self.prompt) :] for output in outputs]

        return captions

    @classmethod
    def from_config(cls, cfg):
        # vision encoder
        image_encoder = VisionTransformerEncoder.from_config(cfg)
        # text encoder + multimodal decoder
        text_decoder = XBertLMHeadDecoder.from_config(cfg)

        prompt = cfg.get("prompt", None)
        max_txt_len = cfg.get("max_txt_len", 40)

        model = cls(image_encoder, text_decoder, prompt=prompt, max_txt_len=max_txt_len)
        model.load_checkpoint_from_config(cfg)

        return model