Spaces:
Sleeping
Sleeping
File size: 14,875 Bytes
d9272c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from copy import deepcopy
import numpy as np
import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.common.utils import get_abs_path
from lavis.models.albef_models import AlbefBase
from lavis.models.albef_models.albef_outputs import (
AlbefIntermediateOutput,
AlbefOutput,
AlbefSimilarity,
)
from lavis.models.base_model import MomentumDistilationMixin, SharedQueueMixin
from lavis.models.med import BertForMaskedLM
from lavis.models.vit import VisionTransformerEncoder
from torch import nn
from transformers import BertConfig
@registry.register_model("albef_pretrain")
class AlbefPretrain(AlbefBase, MomentumDistilationMixin, SharedQueueMixin):
"""
ALBEF pretrain model.
Supported model types:
- base: ALBEF base model used for pretraining.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/albef_pretrain_base.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
queue_size,
embed_dim=256,
mlm_mask_prob=0.15,
temp=0.07,
momentum=0.995,
alpha=0.4,
max_txt_len=30,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.embed_dim = embed_dim
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
# create the momentum encoder
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.vision_proj_m = deepcopy(self.vision_proj)
self.text_proj_m = deepcopy(self.text_proj)
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.vision_proj, self.vision_proj_m],
[self.text_proj, self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
self.queue_size = queue_size
self.momentum = momentum
self.temp = nn.Parameter(temp * torch.ones([]))
self.alpha = alpha
self.max_txt_len = max_txt_len
self.mlm_probability = mlm_mask_prob
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images. Default: H=224, W=224.
- text_input (list): A list of length batch_size, each element is a string of text/caption.
- epoch (int): The current epoch.
- iters (int): The current iteration.
- num_iters_per_epoch (int): The number of iterations per epoch.
Returns:
BlipOutput: A BlipOutput object containing loss and intermediate output. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("albef_pretrain")
>>> images = torch.randn(4, 3, 224, 224)
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"]
>>> samples = {"image": images, "text_input": text_input, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100}
>>> output = model(samples)
>>> output.keys()
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm', 'loss_mlm'])
"""
image = samples["image"]
caption = samples["text_input"]
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
with torch.no_grad():
self.temp.clamp_(0.001, 0.5)
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
self.device
)
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(self.device)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text_output = self.text_encoder.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1
)
image_feat_all = torch.cat(
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1
)
text_output_m = self.text_encoder_m.bert(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds_m = text_output_m.last_hidden_state
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1)
text_feat_all = torch.cat(
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1
)
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
sim_targets.fill_diagonal_(1)
sim_i2t_targets = (
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
)
sim_t2i_targets = (
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
)
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1
).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1
).mean()
loss_itc = (loss_i2t + loss_t2i) / 2
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
# forward the positve image-text pair
encoder_output_pos = self.text_encoder.bert(
encoder_embeds=text_embeds,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
mode="fusion",
)
with torch.no_grad():
bs = image.size(0)
weights_i2t = sim_i2t[:, :bs].clone()
weights_t2i = sim_t2i[:, :bs].clone()
weights_i2t.fill_diagonal_(-np.Inf)
weights_t2i.fill_diagonal_(-np.Inf)
weights_i2t = F.softmax(weights_i2t, dim=1)
weights_t2i = F.softmax(weights_t2i, dim=1)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_embeds_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_embeds_neg.append(text_embeds[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_embeds_neg = torch.stack(text_embeds_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
encoder_output_neg = self.text_encoder.bert(
encoder_embeds=text_embeds_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
mode="fusion",
)
vl_embeddings = torch.cat(
[
encoder_output_pos.last_hidden_state[:, 0, :],
encoder_output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
itm_logits = self.itm_head(vl_embeddings)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(self.device)
loss_itm = F.cross_entropy(itm_logits, itm_labels)
# MLM
input_ids = text.input_ids.clone()
labels = input_ids.clone()
probability_matrix = torch.full(labels.shape, self.mlm_probability)
input_ids, labels = self.mask(
input_ids,
self.text_encoder.config.vocab_size,
self.device,
targets=labels,
probability_matrix=probability_matrix,
)
with torch.no_grad():
logits_m = self.text_encoder_m(
input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds_m,
encoder_attention_mask=image_atts,
return_dict=True,
return_logits=True,
)
mlm_output = self.text_encoder(
input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
labels=labels,
soft_labels=F.softmax(logits_m, dim=-1),
alpha=alpha,
)
loss_mlm = mlm_output.loss
return AlbefOutput(
loss=loss_itc + loss_itm + loss_mlm,
loss_itc=loss_itc,
loss_itm=loss_itm,
loss_mlm=loss_mlm,
sims=AlbefSimilarity(
sim_i2t=sim_i2t,
sim_t2i=sim_t2i,
sim_i2t_m=sim_i2t_m,
sim_t2i_m=sim_t2i_m,
sim_i2t_targets=sim_i2t_targets,
sim_t2i_targets=sim_t2i_targets,
),
intermediate_output=AlbefIntermediateOutput(
image_embeds=image_embeds,
image_embeds_m=image_embeds_m,
text_embeds=text_embeds,
text_embeds_m=text_embeds_m,
encoder_output=encoder_output_pos,
encoder_output_neg=encoder_output_neg,
itm_logits=itm_logits,
itm_labels=itm_labels,
),
)
def mask(
self,
input_ids,
vocab_size,
device,
targets=None,
masked_indices=None,
probability_matrix=None,
):
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
if masked_indices is None:
masked_indices = torch.bernoulli(probability_matrix).bool()
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
if targets is not None:
targets[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = (
torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
)
input_ids[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(
device
)
input_ids[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
if targets is not None:
return input_ids, targets
else:
return input_ids
@classmethod
def from_config(cls, cfg=None):
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True)
config_text_encoder = BertConfig.from_json_file(
get_abs_path(cfg["med_config_path"])
)
config_text_encoder.fusion_layer = 6
text_encoder = BertForMaskedLM.from_pretrained(
"bert-base-uncased", config=config_text_encoder
)
embed_dim = cfg.get("embed_dim", 256)
momentum = cfg.get("momentum", 0.995)
alpha = cfg.get("alpha", 0.4)
mlm_mask_prob = cfg.get("mlm_mask_prob", 0.15)
temp = cfg.get("temp", 0.07)
max_txt_len = cfg.get("max_txt_len", 30)
queue_size = cfg.get("queue_size", 65536)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
queue_size=queue_size,
embed_dim=embed_dim,
mlm_mask_prob=mlm_mask_prob,
temp=temp,
momentum=momentum,
alpha=alpha,
max_txt_len=max_txt_len,
)
return model
|