File size: 9,516 Bytes
d9272c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

from copy import deepcopy

import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.common.utils import get_abs_path
from lavis.models.albef_models import AlbefBase
from lavis.models.albef_models.albef_outputs import AlbefIntermediateOutput, AlbefOutput
from lavis.models.base_model import MomentumDistilationMixin
from lavis.models.med import BertModel
from lavis.models.vit import VisionTransformerEncoder
from torch import nn
from transformers import BertConfig


@registry.register_model("albef_nlvr")
class AlbefNLVR(AlbefBase, MomentumDistilationMixin):
    PRETRAINED_MODEL_CONFIG_DICT = {
        "nlvr": "configs/models/albef_nlvr.yaml",
    }

    def __init__(
        self,
        image_encoder,
        text_encoder,
        num_classes,
        momentum=0.995,
        alpha=0.4,
        use_distill=True,
        max_txt_len=40,
    ):
        super().__init__()

        self.tokenizer = self.init_tokenizer()
        self.max_txt_len = max_txt_len

        self.use_distill = use_distill

        self.visual_encoder = image_encoder
        self.text_encoder = text_encoder

        hidden_size = text_encoder.config.hidden_size
        self.cls_head = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, num_classes),
        )

        self.share_cross_attention(self.text_encoder.encoder)

        if self.use_distill:
            self.visual_encoder_m = deepcopy(self.visual_encoder)
            self.text_encoder_m = deepcopy(self.text_encoder)
            self.cls_head_m = deepcopy(self.cls_head)

            self.share_cross_attention(self.text_encoder_m.encoder)

            self.momentum = momentum
            self.alpha = alpha

            self.model_pairs = [
                [self.visual_encoder, self.visual_encoder_m],
                [self.text_encoder, self.text_encoder_m],
                [self.cls_head, self.cls_head_m],
            ]

            self.copy_params()

    def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
        return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))

    def forward(self, samples, is_train=True):
        """
        Forward function for training and evaluation.

        Args:
            samples (dict): a dict of input samples, which contains the following keys:
                - image0 (torch.Tensor): input image 0, shape (batch_size, 3, H, W), default H=384, W=384.
                - image1 (torch.Tensor): input image 1, shape (batch_size, 3, H, W), default H=384, W=384.
                - text_input (list): list of strings, each string is a natural language sentence.
                - label (torch.LongTensor): ground truth label with shape (batch_size,).
            is_train (bool): whether the model is in training mode.
                If True, the model will return the loss;
                If False, the model will return the prediction.

        Examples:
            >>> import torch
            >>> from lavis.models import load_model
            >>> model = load_model("albef_nlvr")
            >>> samples = {
            ...     "image0": torch.randn(2, 3, 384, 384),
            ...     "image1": torch.randn(2, 3, 384, 384),
            ...     "text_input": ["there is a ferret in tall grass", "there are lips in one of the images"],
            ...     "label": torch.tensor([0, 1]),
            ... }
            >>> output = model(samples)
            >>> output.keys()
            odict_keys(['intermediate_output', 'loss'])
        """
        text = samples["text_input"]
        text = self.tokenizer(
            text,
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            return_tensors="pt",
        ).to(self.device)

        targets = samples["label"]

        image0 = samples["image0"]
        image1 = samples["image1"]
        images = torch.cat([image0, image1], dim=0)

        image_embeds = self.visual_encoder.forward_features(images)
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
            self.device
        )
        image0_embeds, image1_embeds = torch.split(image_embeds, targets.size(0))

        encoder_output = self.text_encoder(
            text.input_ids,
            attention_mask=text.attention_mask,
            encoder_hidden_states=[image0_embeds, image1_embeds],
            encoder_attention_mask=[
                image_atts[: image0_embeds.size(0)],
                image_atts[image0_embeds.size(0) :],
            ],
            return_dict=True,
        )

        prediction = self.cls_head(encoder_output.last_hidden_state[:, 0, :])

        if is_train:
            if self.use_distill:
                with torch.no_grad():
                    self._momentum_update()

                    image_embeds_m = self.visual_encoder_m(images)
                    image0_embeds_m, image1_embeds_m = torch.split(
                        image_embeds_m, targets.size(0)
                    )
                    encoder_output_m = self.text_encoder(
                        text.input_ids,
                        attention_mask=text.attention_mask,
                        encoder_hidden_states=[image0_embeds_m, image1_embeds_m],
                        encoder_attention_mask=[
                            image_atts[: image0_embeds_m.size(0)],
                            image_atts[image0_embeds_m.size(0) :],
                        ],
                        return_dict=True,
                    )

                    prediction_m = self.cls_head_m(
                        encoder_output_m.last_hidden_state[:, 0, :]
                    )

                alpha = self.alpha * self._rampup_factor(
                    epoch=samples["epoch"],
                    iters=samples["iters"],
                    num_iters_per_epoch=samples["num_iters_per_epoch"],
                )

                loss = (1 - alpha) * F.cross_entropy(
                    prediction, targets
                ) - alpha * torch.sum(
                    F.log_softmax(prediction, dim=1) * F.softmax(prediction_m, dim=1),
                    dim=1,
                ).mean()
            else:
                loss = F.cross_entropy(prediction, targets)

                encoder_output_m = None
                image0_embeds_m, image1_embeds_m = None, None

            # return {"loss": loss}
            return AlbefOutput(
                loss=loss,
                intermediate_output=AlbefIntermediateOutput(
                    image_embeds=torch.stack([image0_embeds, image1_embeds], dim=0),
                    image_embeds_m=torch.stack(
                        [image0_embeds_m, image1_embeds_m], dim=0
                    ),
                    encoder_output=encoder_output,
                    encoder_output_m=encoder_output_m,
                ),
            )
        else:
            return {"predictions": prediction, "targets": targets}

    def share_cross_attention(self, model):
        for i in range(6):
            layer_num = 6 + i * 2
            modules_0 = model.layer[layer_num].crossattention.self._modules
            modules_1 = model.layer[layer_num + 1].crossattention.self._modules

            for name in modules_0.keys():
                if "key" in name or "value" in name:
                    module_0 = modules_0[name]
                    module_1 = modules_1[name]
                    if hasattr(module_0, "weight"):
                        module_0.weight = module_1.weight
                        if hasattr(module_0, "bias"):
                            module_0.bias = module_1.bias

    def predict(self, samples):
        output = self.forward(samples, is_train=False)
        return output

    def load_from_pretrained(self, url_or_filename, use_distill=True):
        _, msg = super().load_from_pretrained(url_or_filename)

        if use_distill and any(["_m" in k for k in msg.missing_keys]):
            # this is required when initializing the model from TA pre-trained weights
            self.copy_params()

        return msg

    @classmethod
    def from_config(cls, cfg=None):
        image_encoder = VisionTransformerEncoder.from_config(cfg)

        # text encoder + multimodal encoder
        bert_config = BertConfig.from_json_file(get_abs_path(cfg["med_config_path"]))
        bert_config.num_hidden_layers = 18

        text_encoder = BertModel.from_pretrained(
            "bert-base-uncased", config=bert_config, add_pooling_layer=False
        )

        alpha = cfg.get("alpha", 0.4)
        momentum = cfg.get("momentum", 0.995)
        use_distill = cfg.get("use_distill", True)
        num_classes = cfg.get("num_classes", -1)
        max_txt_len = cfg.get("max_txt_len", 40)

        assert num_classes > 1, "Invalid number of classes provided, found {}".format(
            num_classes
        )

        model = cls(
            image_encoder=image_encoder,
            text_encoder=text_encoder,
            use_distill=use_distill,
            alpha=alpha,
            num_classes=num_classes,
            momentum=momentum,
            max_txt_len=max_txt_len,
        )

        model.load_checkpoint_from_config(cfg)

        return model