"use server" import { Client } from "@gradio/client" export async function upscalePanorama({ image, prompt }: { image: string prompt: string }): Promise { const app = await Client.connect("jbilcke-hf/clarity-upscaler-api") // const dataUri = await fetch(`data:image/jpeg;base64,${base64Data}`) const dataUri = await fetch(image) const imageBlob = await dataUri.blob() const result = await app.predict("/predict", { "Secret Token": process.env.MICRO_SERVICE_SECRET_TOKEN || "", // convert the base64 image to blob "Image": imageBlob, Prompt: `360° HDRI panorama photo, ${prompt}`, "Negative Prompt": "blurry, cropped", "Scalue Factor": 2, "Dynamic": 6, "Creativity": 0.35, "Resemblance": 0.6, "tiling_width": 112, "tiling_height": 144, // epicrealism_naturalSinRC1VAE.safetensors [84d76a0328]', 'juggernaut_reborn.safetensors [338b85bc4f]', 'flat2DAnimerge_v45Sharp.safetensors'], "sd_model": "juggernaut_reborn.safetensors [338b85bc4f]", "scheduler": "DPM++ 3M SDE Karras", }) /* inputs.append(gr.Slider( label="Num Inference Steps", info='''Number of denoising steps''', value=18, minimum=1, maximum=100, step=1, )) inputs.append(gr.Number( label="Seed", info='''Random seed. Leave blank to randomize the seed''', value=1337 )) inputs.append(gr.Checkbox( label="Downscaling", info='''Downscale the image before upscaling. Can improve quality and speed for images with high resolution but lower quality''', value=False )) inputs.append(gr.Number( label="Downscaling Resolution", info='''Downscaling resolution''', value=768 )) inputs.append(gr.Textbox( label="Lora Links", info='''Link to a lora file you want to use in your upscaling. Multiple links possible, seperated by comma''' )) inputs.append(gr.Textbox( label="Custom Sd Model", info='''Link to a custom safetensors checkpoint file you want to use in your upscaling. Will overwrite sd_model checkpoint.''' )) ]) */ console.log(`result:`, result) return "" }