import os import tempfile from typing import Any import torch import numpy as np from PIL import Image import gradio as gr import trimesh from transparent_background import Remover from diffusers import DiffusionPipeline # Import and setup SPAR3D os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") import spar3d.utils as spar3d_utils from spar3d.system import SPAR3D # Constants COND_WIDTH = 512 COND_HEIGHT = 512 COND_DISTANCE = 2.2 COND_FOVY = 0.591627 BACKGROUND_COLOR = [0.5, 0.5, 0.5] # Initialize models device = spar3d_utils.get_device() bg_remover = Remover() spar3d_model = SPAR3D.from_pretrained( "stabilityai/stable-point-aware-3d", config_name="config.yaml", weight_name="model.safetensors" ).eval().to(device) # Initialize FLUX model dtype = torch.bfloat16 flux_pipe = DiffusionPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ).to(device) # Initialize camera parameters c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( COND_FOVY, COND_HEIGHT, COND_WIDTH ) def create_batch(input_image: Image) -> dict[str, Any]: """Prepare image batch for model input.""" img_cond = ( torch.from_numpy( np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) / 255.0 ) .float() .clip(0, 1) ) mask_cond = img_cond[:, :, -1:] rgb_cond = torch.lerp( torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond ) batch = { "rgb_cond": rgb_cond.unsqueeze(0), "mask_cond": mask_cond.unsqueeze(0), "c2w_cond": c2w_cond.unsqueeze(0), "intrinsic_cond": intrinsic.unsqueeze(0), "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), } return batch def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str, Image.Image]: """Generate image from prompt and convert to 3D model.""" try: # Generate image using FLUX generator = torch.Generator(device=device).manual_seed(seed) generated_image = flux_pipe( prompt=prompt, width=width, height=height, num_inference_steps=4, generator=generator, guidance_scale=0.0 ).images[0] # Convert PIL image to RGBA input_image = generated_image.convert("RGBA") # Remove background rgba_image = bg_remover.process(input_image.convert("RGB")) rgba_image.putalpha(255) # Add alpha channel # Auto crop input_image = spar3d_utils.foreground_crop( rgba_image, crop_ratio=1.3, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=False ) # Prepare batch batch = create_batch(input_image) batch = {k: v.to(device) for k, v in batch.items()} # Generate mesh with torch.no_grad(): with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16): trimesh_mesh, _ = spar3d_model.generate_mesh( batch, 1024, # texture_resolution remesh="none", vertex_count=-1, estimate_illumination=True ) trimesh_mesh = trimesh_mesh[0] # Export to GLB temp_dir = tempfile.mkdtemp() output_path = os.path.join(temp_dir, 'output.glb') trimesh_mesh.export(output_path, file_type="glb", include_normals=True) return output_path, generated_image except Exception as e: print(f"Error: {str(e)}") return None, None # Create Gradio interface demo = gr.Interface( fn=generate_and_process_3d, inputs=[ gr.Text( label="Enter your prompt", placeholder="Describe what you want to generate..." ), gr.Slider( label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=42 ), gr.Slider( label="Width", minimum=256, maximum=2048, step=32, value=1024 ), gr.Slider( label="Height", minimum=256, maximum=2048, step=32, value=1024 ) ], outputs=[ gr.File( label="Download 3D Model", file_types=[".glb"] ), gr.Image( label="Generated Image", type="pil" ) ], title="Text to 3D Model Generator", description="Enter a text prompt to generate an image that will be converted into a 3D model", ) if __name__ == "__main__": demo.queue().launch()