import os import tempfile from typing import Any import torch import numpy as np from PIL import Image import gradio as gr import trimesh from transparent_background import Remover from diffusers import DiffusionPipeline # Import and setup SPAR3D os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") import spar3d.utils as spar3d_utils from spar3d.system import SPAR3D # Constants COND_WIDTH = 512 COND_HEIGHT = 512 COND_DISTANCE = 2.2 COND_FOVY = 0.591627 BACKGROUND_COLOR = [0.5, 0.5, 0.5] # Initialize models device = spar3d_utils.get_device() bg_remover = Remover() spar3d_model = SPAR3D.from_pretrained( "stabilityai/stable-point-aware-3d", config_name="config.yaml", weight_name="model.safetensors" ).eval().to(device) # Initialize FLUX model dtype = torch.bfloat16 flux_pipe = DiffusionPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ).to(device) # Initialize camera parameters c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( COND_FOVY, COND_HEIGHT, COND_WIDTH ) def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image: """Create an RGBA image from RGB image and optional mask.""" rgba_image = rgb_image.convert('RGBA') if mask is not None: print("[debug] mask shape before alpha:", mask.shape) # Ensure mask is 2D before converting to alpha if len(mask.shape) > 2: mask = mask.squeeze() alpha = Image.fromarray((mask * 255).astype(np.uint8)) print("[debug] alpha size:", alpha.size) rgba_image.putalpha(alpha) return rgba_image def create_batch(input_image: Image.Image) -> dict[str, Any]: """Prepare image batch for model input.""" # Resize and convert input image to numpy array resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT)) img_array = np.array(resized_image).astype(np.float32) / 255.0 print("[debug] img_array shape:", img_array.shape) # Extract RGB and alpha channels if img_array.shape[-1] == 4: # RGBA rgb = img_array[..., :3] mask = img_array[..., 3:4] else: # RGB rgb = img_array mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32) # Convert to tensors while keeping channel-last format rgb = torch.from_numpy(rgb).float() # [H, W, 3] mask = torch.from_numpy(mask).float() # [H, W, 1] print("[debug] rgb tensor shape:", rgb.shape) print("[debug] mask tensor shape:", mask.shape) # Create background blend (match channel-last format) bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3] print("[debug] bg_tensor shape:", bg_tensor.shape) # Blend RGB with background using mask (all in channel-last format) rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3] print("[debug] rgb_cond shape after blend:", rgb_cond.shape) # Move channels to correct dimension and add batch dimension # Important: For SPAR3D image tokenizer, we need [B, H, W, C] format rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3] mask = mask.unsqueeze(0) # [1, H, W, 1] print("[debug] rgb_cond final shape:", rgb_cond.shape) print("[debug] mask final shape:", mask.shape) # Create the batch dictionary batch = { "rgb_cond": rgb_cond, # [1, H, W, 3] "mask_cond": mask, # [1, H, W, 1] "c2w_cond": c2w_cond.unsqueeze(0), # [1, 4, 4] "intrinsic_cond": intrinsic.unsqueeze(0), # [1, 3, 3] "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3] } print("\nFinal batch shapes:") for k, v in batch.items(): print(f"[debug] {k} final shape:", v.shape) print("\nrgb_cond max:", batch["rgb_cond"].max()) print("rgb_cond min:", batch["rgb_cond"].min()) print("mask_cond unique values:", torch.unique(batch["mask_cond"])) return batch def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"): """Process batch through model and generate point cloud.""" print("\n[debug] Starting forward_model") print("[debug] Input rgb_cond shape:", batch["rgb_cond"].shape) print("[debug] Input mask_cond shape:", batch["mask_cond"].shape) batch_size = batch["rgb_cond"].shape[0] assert batch_size == 1, f"Expected batch size 1, got {batch_size}" # Print value ranges for debugging print("\nValue ranges:") print("rgb_cond max:", batch["rgb_cond"].max()) print("rgb_cond min:", batch["rgb_cond"].min()) print("mask_cond unique values:", torch.unique(batch["mask_cond"])) # Generate point cloud tokens print("\n[debug] Generating point cloud tokens") try: cond_tokens = system.forward_pdiff_cond(batch) print("[debug] cond_tokens shape:", cond_tokens.shape) except Exception as e: print("\n[ERROR] Failed in forward_pdiff_cond:") print(e) print("\nInput tensor properties:") print("rgb_cond dtype:", batch["rgb_cond"].dtype) print("rgb_cond device:", batch["rgb_cond"].device) print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad) raise # Sample points print("\n[debug] Sampling points") sample_iter = system.sampler.sample_batch_progressive( batch_size, cond_tokens, guidance_scale=guidance_scale, device=device ) # Get final samples for x in sample_iter: samples = x["xstart"] print("[debug] samples shape before permute:", samples.shape) pc_cond = samples.permute(0, 2, 1).float() print("[debug] pc_cond shape after permute:", pc_cond.shape) # Normalize point cloud pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond) print("[debug] pc_cond shape after normalize:", pc_cond.shape) # Subsample to 512 points pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]] print("[debug] pc_cond final shape:", pc_cond.shape) return pc_cond def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str | None, Image.Image | None]: """Generate image from prompt and convert to 3D model.""" try: # Set random seeds torch.manual_seed(seed) np.random.seed(seed) # Generate image using FLUX generator = torch.Generator(device=device).manual_seed(seed) print("[debug] generating the image using Flux") generated_image = flux_pipe( prompt=prompt, width=width, height=height, num_inference_steps=4, generator=generator, guidance_scale=0.0 ).images[0] print("[debug] converting the image to rgb") rgb_image = generated_image.convert('RGB') print("[debug] removing the background by calling bg_remover.process(rgb_image)") no_bg_image = bg_remover.process(rgb_image) print("[debug] converting to numpy array to extract the mask") no_bg_array = np.array(no_bg_image) # Create mask based on RGB values mask = ((no_bg_array > 0).any(axis=2)).astype(np.float32) mask = np.expand_dims(mask, axis=2) # Add channel dimension print("[debug] creating the RGBA image using create_rgba_image(rgb_image, mask)") rgba_image = create_rgba_image(rgb_image, mask) print("[debug] auto-cropping the rgba_image using spar3d_utils.foreground_crop(...)") processed_image = spar3d_utils.foreground_crop( rgba_image, crop_ratio=1.3, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=False ) # Prepare batch for processing print("[debug] preparing the batch by calling create_batch(processed_image)") batch = create_batch(processed_image) batch = {k: v.to(device) for k, v in batch.items()} # Generate point cloud pc_cond = forward_model( batch, spar3d_model, guidance_scale=3.0, seed=seed, device=device ) batch["pc_cond"] = pc_cond # Generate mesh with torch.no_grad(): print("[debug] calling torch.autocast(....) to generate the mesh") with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16): trimesh_mesh, _ = spar3d_model.generate_mesh( batch, 1024, # texture_resolution remesh="none", vertex_count=-1, estimate_illumination=True ) trimesh_mesh = trimesh_mesh[0] # Export to GLB print("[debug] creating tmp dir for the .glb output") temp_dir = tempfile.mkdtemp() output_path = os.path.join(temp_dir, 'output.glb') print("[debug] calling trimesh_mesh.export(...) to export to .glb") trimesh_mesh.export(output_path, file_type="glb", include_normals=True) return output_path, generated_image except Exception as e: print(f"Error during generation: {str(e)}") import traceback traceback.print_exc() return None, None # Create Gradio interface demo = gr.Interface( fn=generate_and_process_3d, inputs=[ gr.Text( label="Enter your prompt", placeholder="Describe what you want to generate..." ), gr.Slider( label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=42 ), gr.Slider( label="Width", minimum=256, maximum=2048, step=32, value=1024 ), gr.Slider( label="Height", minimum=256, maximum=2048, step=32, value=1024 ) ], outputs=[ gr.File( label="Download 3D Model", file_types=[".glb"] ), gr.Image( label="Generated Image", type="pil" ) ], title="Text to 3D Model Generator", description="Enter a text prompt to generate an image that will be converted into a 3D model", ) if __name__ == "__main__": demo.queue().launch()