text-to-3d / gradio_app.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update gradio_app.py
f779fbc verified
raw
history blame
6.8 kB
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
"""Create an RGBA image from RGB image and optional mask."""
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
# Convert mask to alpha channel format
alpha = Image.fromarray((mask * 255).astype(np.uint8))
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
# Ensure input is RGBA
if input_image.mode != 'RGBA':
input_image = input_image.convert('RGBA')
# Resize and convert to numpy array
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
# Split into RGB and alpha
rgb = img_array[..., :3]
alpha = img_array[..., 3:4]
# Convert to tensors
rgb_tensor = torch.from_numpy(rgb).float()
alpha_tensor = torch.from_numpy(alpha).float()
# Create background blend
bg_tensor = torch.tensor(BACKGROUND_COLOR)[None, None, :]
rgb_cond = torch.lerp(bg_tensor, rgb_tensor, alpha_tensor)
batch = {
"rgb_cond": rgb_cond.unsqueeze(0),
"mask_cond": alpha_tensor.unsqueeze(0),
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
return batch
def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str | None, Image.Image | None]:
"""Generate image from prompt and convert to 3D model."""
try:
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
print("[debug] generating the image using Flux")
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
# Process the generated image
print("[debug] converting the image to rgb")
rgb_image = generated_image.convert('RGB')
# Remove background
print("[debug] removing the background by calling bg_remover.process(rgb_image)")
no_bg_image = bg_remover.process(rgb_image)
# Convert to numpy array to extract mask
print("[debug] converting to numpy array to extract the mask")
no_bg_array = np.array(no_bg_image)
mask = (no_bg_array.sum(axis=2) > 0).astype(np.float32)
# Create RGBA image
print("[debug] creating the RGBA image using create_rgba_image(rgb_image, mask)")
rgba_image = create_rgba_image(rgb_image, mask)
# Auto crop with foreground
print(f"[debug] auto-cromming the rgba_image using spar3d_utils.foreground_crop(...). newsize=(COND_WIDTH, COND_HEIGHT) = ({COND_WIDTH}, {COND_HEIGHT})")
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
print("[debug] preparing the batch by calling create_batch(processed_image)")
# Prepare batch for 3D generation
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate mesh
with torch.no_grad():
print("[debug] calling torch.autocast(....) to generate the mesh")
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
print("[debug] creating tmp dir for the .glb output")
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
print("[debug] calling trimesh_mesh.export(...) to export to .glb")
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path, generated_image
except Exception as e:
print(f"Error during generation: {str(e)}")
return None, None
# Create Gradio interface
demo = gr.Interface(
fn=generate_and_process_3d,
inputs=[
gr.Text(
label="Enter your prompt",
placeholder="Describe what you want to generate..."
),
gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=42
),
gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024
),
gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=32,
value=1024
)
],
outputs=[
gr.File(
label="Download 3D Model",
file_types=[".glb"]
),
gr.Image(
label="Generated Image",
type="pil"
)
],
title="Text to 3D Model Generator",
description="Enter a text prompt to generate an image that will be converted into a 3D model",
)
if __name__ == "__main__":
demo.queue().launch()