text-to-3d / gradio_app.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update gradio_app.py
e973397 verified
raw
history blame
4.99 kB
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_batch(input_image: Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch = {
"rgb_cond": rgb_cond.unsqueeze(0),
"mask_cond": mask_cond.unsqueeze(0),
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
return batch
def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str, Image.Image]:
"""Generate image from prompt and convert to 3D model."""
try:
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
# Convert PIL image to RGBA
input_image = generated_image.convert("RGBA")
# Remove background
rgba_image = bg_remover.process(input_image.convert("RGB"))
rgba_image.putalpha(255) # Add alpha channel
# Auto crop
input_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
# Prepare batch
batch = create_batch(input_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate mesh
with torch.no_grad():
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path, generated_image
except Exception as e:
print(f"Error: {str(e)}")
return None, None
# Create Gradio interface
demo = gr.Interface(
fn=generate_and_process_3d,
inputs=[
gr.Text(
label="Enter your prompt",
placeholder="Describe what you want to generate..."
),
gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=42
),
gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024
),
gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=32,
value=1024
)
],
outputs=[
gr.File(
label="Download 3D Model",
file_types=[".glb"]
),
gr.Image(
label="Generated Image",
type="pil"
)
],
title="Text to 3D Model Generator",
description="Enter a text prompt to generate an image that will be converted into a 3D model",
)
if __name__ == "__main__":
demo.queue().launch()