text-to-3d / gradio_app.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update gradio_app.py
c9fb81c verified
raw
history blame
5.86 kB
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, alpha: np.ndarray = None) -> Image.Image:
"""Create an RGBA image from RGB image and optional alpha channel."""
if alpha is None:
alpha = np.full(rgb_image.size[::-1], 255, dtype=np.uint8)
rgba = Image.new('RGBA', rgb_image.size)
rgba.paste(rgb_image)
rgba.putalpha(Image.fromarray(alpha))
return rgba
def create_batch(input_image: Image.Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
# Ensure input is RGBA
if input_image.mode != 'RGBA':
input_image = input_image.convert('RGBA')
# Resize and convert to numpy array
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
# Split into RGB and alpha
rgb = img_array[..., :3]
alpha = img_array[..., 3:4]
# Convert to tensors
rgb_tensor = torch.from_numpy(rgb).float()
alpha_tensor = torch.from_numpy(alpha).float()
# Create background blend
bg_tensor = torch.tensor(BACKGROUND_COLOR)[None, None, :]
rgb_cond = torch.lerp(bg_tensor, rgb_tensor, alpha_tensor)
batch = {
"rgb_cond": rgb_cond.unsqueeze(0),
"mask_cond": alpha_tensor.unsqueeze(0),
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
return batch
def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str | None, Image.Image | None]:
"""Generate image from prompt and convert to 3D model."""
try:
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
# Process the generated image
rgb_image = generated_image.convert('RGB')
# Remove background and get mask
mask = bg_remover.process(rgb_image)
mask_uint8 = (mask * 255).astype(np.uint8)
# Create RGBA image
rgba_image = create_rgba_image(rgb_image, mask_uint8)
# Auto crop with foreground
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
# Prepare batch for 3D generation
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate mesh
with torch.no_grad():
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path, generated_image
except Exception as e:
print(f"Error during generation: {str(e)}")
return None, None
# Create Gradio interface
demo = gr.Interface(
fn=generate_and_process_3d,
inputs=[
gr.Text(
label="Enter your prompt",
placeholder="Describe what you want to generate..."
),
gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=42
),
gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024
),
gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=32,
value=1024
)
],
outputs=[
gr.File(
label="Download 3D Model",
file_types=[".glb"]
),
gr.Image(
label="Generated Image",
type="pil"
)
],
title="Text to 3D Model Generator",
description="Enter a text prompt to generate an image that will be converted into a 3D model",
)
if __name__ == "__main__":
demo.queue().launch()