Spaces:
Running
on
L40S
Running
on
L40S
import os | |
import tempfile | |
from typing import Any | |
import torch | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
import trimesh | |
from transparent_background import Remover | |
from diffusers import DiffusionPipeline | |
# Import and setup SPAR3D | |
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") | |
import spar3d.utils as spar3d_utils | |
from spar3d.system import SPAR3D | |
# Constants | |
COND_WIDTH = 512 | |
COND_HEIGHT = 512 | |
COND_DISTANCE = 2.2 | |
COND_FOVY = 0.591627 | |
BACKGROUND_COLOR = [0.5, 0.5, 0.5] | |
# Initialize models | |
device = spar3d_utils.get_device() | |
bg_remover = Remover() | |
spar3d_model = SPAR3D.from_pretrained( | |
"stabilityai/stable-point-aware-3d", | |
config_name="config.yaml", | |
weight_name="model.safetensors" | |
).eval().to(device) | |
# Initialize FLUX model | |
dtype = torch.bfloat16 | |
flux_pipe = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype | |
).to(device) | |
# Initialize camera parameters | |
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) | |
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( | |
COND_FOVY, COND_HEIGHT, COND_WIDTH | |
) | |
def create_rgba_image(rgb_image: Image.Image, alpha: np.ndarray = None) -> Image.Image: | |
"""Create an RGBA image from RGB image and optional alpha channel.""" | |
if alpha is None: | |
alpha = np.full(rgb_image.size[::-1], 255, dtype=np.uint8) | |
rgba = Image.new('RGBA', rgb_image.size) | |
rgba.paste(rgb_image) | |
rgba.putalpha(Image.fromarray(alpha)) | |
return rgba | |
def create_batch(input_image: Image.Image) -> dict[str, Any]: | |
"""Prepare image batch for model input.""" | |
# Ensure input is RGBA | |
if input_image.mode != 'RGBA': | |
input_image = input_image.convert('RGBA') | |
# Resize and convert to numpy array | |
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT)) | |
img_array = np.array(resized_image).astype(np.float32) / 255.0 | |
# Split into RGB and alpha | |
rgb = img_array[..., :3] | |
alpha = img_array[..., 3:4] | |
# Convert to tensors | |
rgb_tensor = torch.from_numpy(rgb).float() | |
alpha_tensor = torch.from_numpy(alpha).float() | |
# Create background blend | |
bg_tensor = torch.tensor(BACKGROUND_COLOR)[None, None, :] | |
rgb_cond = torch.lerp(bg_tensor, rgb_tensor, alpha_tensor) | |
batch = { | |
"rgb_cond": rgb_cond.unsqueeze(0), | |
"mask_cond": alpha_tensor.unsqueeze(0), | |
"c2w_cond": c2w_cond.unsqueeze(0), | |
"intrinsic_cond": intrinsic.unsqueeze(0), | |
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), | |
} | |
return batch | |
def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str | None, Image.Image | None]: | |
"""Generate image from prompt and convert to 3D model.""" | |
try: | |
# Generate image using FLUX | |
generator = torch.Generator(device=device).manual_seed(seed) | |
generated_image = flux_pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=4, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
# Process the generated image | |
rgb_image = generated_image.convert('RGB') | |
# Remove background and get mask | |
mask = bg_remover.process(rgb_image) | |
mask_uint8 = (mask * 255).astype(np.uint8) | |
# Create RGBA image | |
rgba_image = create_rgba_image(rgb_image, mask_uint8) | |
# Auto crop with foreground | |
processed_image = spar3d_utils.foreground_crop( | |
rgba_image, | |
crop_ratio=1.3, | |
newsize=(COND_WIDTH, COND_HEIGHT), | |
no_crop=False | |
) | |
# Prepare batch for 3D generation | |
batch = create_batch(processed_image) | |
batch = {k: v.to(device) for k, v in batch.items()} | |
# Generate mesh | |
with torch.no_grad(): | |
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16): | |
trimesh_mesh, _ = spar3d_model.generate_mesh( | |
batch, | |
1024, # texture_resolution | |
remesh="none", | |
vertex_count=-1, | |
estimate_illumination=True | |
) | |
trimesh_mesh = trimesh_mesh[0] | |
# Export to GLB | |
temp_dir = tempfile.mkdtemp() | |
output_path = os.path.join(temp_dir, 'output.glb') | |
trimesh_mesh.export(output_path, file_type="glb", include_normals=True) | |
return output_path, generated_image | |
except Exception as e: | |
print(f"Error during generation: {str(e)}") | |
return None, None | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_and_process_3d, | |
inputs=[ | |
gr.Text( | |
label="Enter your prompt", | |
placeholder="Describe what you want to generate..." | |
), | |
gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=np.iinfo(np.int32).max, | |
step=1, | |
value=42 | |
), | |
gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=2048, | |
step=32, | |
value=1024 | |
), | |
gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=2048, | |
step=32, | |
value=1024 | |
) | |
], | |
outputs=[ | |
gr.File( | |
label="Download 3D Model", | |
file_types=[".glb"] | |
), | |
gr.Image( | |
label="Generated Image", | |
type="pil" | |
) | |
], | |
title="Text to 3D Model Generator", | |
description="Enter a text prompt to generate an image that will be converted into a 3D model", | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |