text-to-3d / gradio_app.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update gradio_app.py
751171e verified
raw
history blame
9.32 kB
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
"""Create an RGBA image from RGB image and optional mask."""
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
print("[debug] mask shape before alpha:", mask.shape)
# Ensure mask is 2D before converting to alpha
if len(mask.shape) > 2:
mask = mask.squeeze()
alpha = Image.fromarray((mask * 255).astype(np.uint8))
print("[debug] alpha size:", alpha.size)
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
# Resize and convert input image to numpy array
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
print("[debug] img_array shape:", img_array.shape)
# Extract RGB and alpha channels
if img_array.shape[-1] == 4: # RGBA
rgb = img_array[..., :3]
mask = img_array[..., 3:4]
else: # RGB
rgb = img_array
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
# Convert to tensors
rgb = torch.from_numpy(rgb).float()
mask = torch.from_numpy(mask).float()
print("[debug] rgb tensor shape:", rgb.shape)
print("[debug] mask tensor shape:", mask.shape)
# Create background blend
bg_tensor = torch.tensor(BACKGROUND_COLOR)[None, None, :]
print("[debug] bg_tensor shape:", bg_tensor.shape)
# Blend RGB with background using mask
rgb_cond = torch.lerp(bg_tensor, rgb, mask)
print("[debug] rgb_cond shape:", rgb_cond.shape)
# Permute the tensors to match the expected shape [B, C, H, W]
rgb_cond = torch.movedim(rgb_cond, 2, 0).unsqueeze(0) # [1, 3, H, W]
mask = torch.movedim(mask, 2, 0).unsqueeze(0) # [1, 1, H, W]
print("[debug] rgb_cond after permute shape:", rgb_cond.shape)
print("[debug] mask after permute shape:", mask.shape)
batch = {
"rgb_cond": rgb_cond,
"mask_cond": mask,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Final shapes check
for k, v in batch.items():
print(f"[debug] {k} final shape:", v.shape)
return batch
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
"""Process batch through model and generate point cloud."""
print("[debug] Starting forward_model")
batch_size = batch["rgb_cond"].shape[0]
# Generate point cloud tokens
print("[debug] Generating point cloud tokens")
cond_tokens = system.forward_pdiff_cond(batch)
print("[debug] cond_tokens shape:", cond_tokens.shape)
# Sample points
print("[debug] Sampling points")
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device
)
# Get final samples
for x in sample_iter:
samples = x["xstart"]
print("[debug] samples shape before permute:", samples.shape)
# Convert samples to point cloud format
pc_cond = samples.permute(0, 2, 1).float()
print("[debug] pc_cond shape after permute:", pc_cond.shape)
# Normalize point cloud
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
print("[debug] pc_cond shape after normalize:", pc_cond.shape)
# Subsample to 512 points
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
print("[debug] pc_cond final shape:", pc_cond.shape)
return pc_cond
def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str | None, Image.Image | None]:
"""Generate image from prompt and convert to 3D model."""
try:
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
print("[debug] generating the image using Flux")
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
print("[debug] converting the image to rgb")
rgb_image = generated_image.convert('RGB')
print("[debug] removing the background by calling bg_remover.process(rgb_image)")
no_bg_image = bg_remover.process(rgb_image)
print("[debug] converting to numpy array to extract the mask")
no_bg_array = np.array(no_bg_image)
# Create mask based on RGB values
mask = ((no_bg_array > 0).any(axis=2)).astype(np.float32)
mask = np.expand_dims(mask, axis=2) # Add channel dimension
print("[debug] creating the RGBA image using create_rgba_image(rgb_image, mask)")
rgba_image = create_rgba_image(rgb_image, mask)
print("[debug] auto-cropping the rgba_image using spar3d_utils.foreground_crop(...)")
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
# Prepare batch for processing
print("[debug] preparing the batch by calling create_batch(processed_image)")
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate point cloud
pc_cond = forward_model(
batch,
spar3d_model,
guidance_scale=3.0,
seed=seed,
device=device
)
batch["pc_cond"] = pc_cond
# Generate mesh
with torch.no_grad():
print("[debug] calling torch.autocast(....) to generate the mesh")
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
print("[debug] creating tmp dir for the .glb output")
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
print("[debug] calling trimesh_mesh.export(...) to export to .glb")
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path, generated_image
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None
# Create Gradio interface
demo = gr.Interface(
fn=generate_and_process_3d,
inputs=[
gr.Text(
label="Enter your prompt",
placeholder="Describe what you want to generate..."
),
gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=42
),
gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024
),
gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=32,
value=1024
)
],
outputs=[
gr.File(
label="Download 3D Model",
file_types=[".glb"]
),
gr.Image(
label="Generated Image",
type="pil"
)
],
title="Text to 3D Model Generator",
description="Enter a text prompt to generate an image that will be converted into a 3D model",
)
if __name__ == "__main__":
demo.queue().launch()