Spaces:
Running
on
L40S
Running
on
L40S
import os | |
import tempfile | |
from typing import Any | |
import torch | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
import trimesh | |
from transparent_background import Remover | |
# Import and setup SPAR3D | |
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") | |
import spar3d.utils as spar3d_utils | |
from spar3d.system import SPAR3D | |
# Constants | |
COND_WIDTH = 512 | |
COND_HEIGHT = 512 | |
COND_DISTANCE = 2.2 | |
COND_FOVY = 0.591627 | |
BACKGROUND_COLOR = [0.5, 0.5, 0.5] | |
# Initialize models | |
device = spar3d_utils.get_device() | |
bg_remover = Remover() | |
model = SPAR3D.from_pretrained( | |
"stabilityai/stable-point-aware-3d", | |
config_name="config.yaml", | |
weight_name="model.safetensors" | |
).eval().to(device) | |
# Initialize camera parameters | |
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) | |
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( | |
COND_FOVY, COND_HEIGHT, COND_WIDTH | |
) | |
def create_batch(input_image: Image) -> dict[str, Any]: | |
"""Prepare image batch for model input.""" | |
img_cond = ( | |
torch.from_numpy( | |
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) | |
/ 255.0 | |
) | |
.float() | |
.clip(0, 1) | |
) | |
mask_cond = img_cond[:, :, -1:] | |
rgb_cond = torch.lerp( | |
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond | |
) | |
batch = { | |
"rgb_cond": rgb_cond.unsqueeze(0), | |
"mask_cond": mask_cond.unsqueeze(0), | |
"c2w_cond": c2w_cond.unsqueeze(0), | |
"intrinsic_cond": intrinsic.unsqueeze(0), | |
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), | |
} | |
return batch | |
def process_image(image_path: str) -> str: | |
"""Process image and return path to GLB file.""" | |
try: | |
# Load image | |
input_image = Image.open(image_path) | |
# Remove background if needed | |
if input_image.mode != 'RGBA': | |
input_image = bg_remover.process(input_image.convert("RGB")) | |
# Auto crop | |
input_image = spar3d_utils.foreground_crop( | |
input_image, | |
crop_ratio=1.3, # Default padding ratio | |
newsize=(COND_WIDTH, COND_HEIGHT), | |
no_crop=False | |
) | |
# Prepare batch | |
batch = create_batch(input_image) | |
batch = {k: v.to(device) for k, v in batch.items()} | |
# Generate mesh | |
with torch.no_grad(): | |
with torch.autocast(device_type=device, dtype=torch.bfloat16) if "cuda" in device else nullcontext(): | |
trimesh_mesh, _ = model.generate_mesh( | |
batch, | |
1024, # <- texture_resolution | |
remesh="none", | |
vertex_count=-1, | |
estimate_illumination=True | |
) | |
trimesh_mesh = trimesh_mesh[0] | |
# Export to GLB | |
temp_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) | |
trimesh_mesh.export(temp_file.name, file_type="glb", include_normals=True) | |
return temp_file.name | |
except Exception as e: | |
return str(e) | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=process_image, | |
inputs=gr.File( | |
label="Upload Image", | |
file_types=["image"], | |
), | |
outputs=gr.File( | |
label="Download GLB", | |
file_types=[".glb"], | |
), | |
title="SPAR3D Image to GLB Converter", | |
description="Upload an image (JPG, PNG, or WebP) and get back a 3D model in GLB format", | |
) | |
if __name__ == "__main__": | |
demo.launch() |