Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,965 Bytes
38dbec8 eecf990 38dbec8 eecf990 38dbec8 1c05005 38dbec8 eecf990 a399d55 e2ccc8a 38dbec8 eecf990 e2ccc8a 38dbec8 eecf990 e2ccc8a eecf990 1c05005 e2ccc8a eecf990 38dbec8 1c05005 eecf990 38dbec8 aec7186 daf9fe6 eecf990 daf9fe6 38dbec8 eecf990 daf9fe6 38dbec8 eecf990 daf9fe6 1c05005 eecf990 1c05005 e973397 1c05005 daf9fe6 aec7186 eecf990 daf9fe6 aec7186 eecf990 daf9fe6 e973397 1c05005 38dbec8 eecf990 38dbec8 daf9fe6 eecf990 e973397 1c05005 eecf990 1c05005 eecf990 287be50 eecf990 e973397 eecf990 e973397 eecf990 daf9fe6 e973397 1c05005 e973397 eecf990 1c05005 e973397 1c05005 eecf990 38dbec8 eecf990 e973397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
"""Create an RGBA image from RGB image and optional mask."""
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
# Convert mask to alpha channel format
alpha = Image.fromarray((mask * 255).astype(np.uint8))
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
# Ensure input is RGBA
if input_image.mode != 'RGBA':
input_image = input_image.convert('RGBA')
# Resize and convert to numpy array
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
# Split into RGB and alpha
rgb = img_array[..., :3]
alpha = img_array[..., 3:4]
# Convert to tensors
rgb_tensor = torch.from_numpy(rgb).float()
alpha_tensor = torch.from_numpy(alpha).float()
# Create background blend
bg_tensor = torch.tensor(BACKGROUND_COLOR)[None, None, :]
rgb_cond = torch.lerp(bg_tensor, rgb_tensor, alpha_tensor)
batch = {
"rgb_cond": rgb_cond.unsqueeze(0),
"mask_cond": alpha_tensor.unsqueeze(0),
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
return batch
def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str | None, Image.Image | None]:
"""Generate image from prompt and convert to 3D model."""
try:
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
# Process the generated image
rgb_image = generated_image.convert('RGB')
# Remove background
no_bg_image = bg_remover.process(rgb_image)
# Convert to numpy array to extract mask
no_bg_array = np.array(no_bg_image)
mask = (no_bg_array.sum(axis=2) > 0).astype(np.float32)
# Create RGBA image
rgba_image = create_rgba_image(rgb_image, mask)
# Auto crop with foreground
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
# Prepare batch for 3D generation
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate mesh
with torch.no_grad():
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path, generated_image
except Exception as e:
print(f"Error during generation: {str(e)}")
return None, None
# Create Gradio interface
demo = gr.Interface(
fn=generate_and_process_3d,
inputs=[
gr.Text(
label="Enter your prompt",
placeholder="Describe what you want to generate..."
),
gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=42
),
gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024
),
gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=32,
value=1024
)
],
outputs=[
gr.File(
label="Download 3D Model",
file_types=[".glb"]
),
gr.Image(
label="Generated Image",
type="pil"
)
],
title="Text to 3D Model Generator",
description="Enter a text prompt to generate an image that will be converted into a 3D model",
)
if __name__ == "__main__":
demo.queue().launch() |