File size: 4,398 Bytes
610725e c359b08 610725e c359b08 610725e 9d13a4e 610725e fa9544d 610725e c359b08 9d13a4e 610725e 6c8acb9 610725e 9d13a4e 610725e c359b08 610725e 3bcd657 610725e 9d13a4e 610725e 9d13a4e 610725e 9d13a4e 610725e 9d13a4e 610725e 6c8acb9 610725e 9d13a4e 610725e 9d13a4e 610725e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import express from "express"
import { python } from 'pythonia'
import { daisy } from "./daisy.mts"
import { alpine } from "./alpine.mts"
// import Python dependencies
const { AutoModelForCausalLM } = await python('ctransformers')
// define the CSS and JS dependencies
const css = [
"/css/[email protected]",
].map(item => `<link href="${item}" rel="stylesheet" type="text/css"/>`)
.join("")
const script = [
"/js/[email protected]",
"/js/[email protected]"
].map(item => `<script src="${item}"></script>`)
.join("")
// import the language model (note: need a fast internet link)
const llm = await AutoModelForCausalLM.from_pretrained$(
"TheBloke/WizardCoder-15B-1.0-GGML", {
model_file: "WizardCoder-15B-1.0.ggmlv3.q4_0.bin",
model_type: "starcoder"
})
const app = express()
const port = 7860
const timeoutInSec = 60 * 60
console.log("timeout set to 60 minutes")
app.use(express.static("public"))
const maxParallelRequests = 1
const pending: {
total: number;
queue: string[];
} = {
total: 0,
queue: [],
}
const endRequest = (id: string, reason: string) => {
if (!id || !pending.queue.includes(id)) {
return
}
pending.queue = pending.queue.filter(i => i !== id)
console.log(`request ${id} ended (${reason})`)
}
// we need to exit the open Python process or else it will keep running in the background
process.on('SIGINT', () => {
try {
(python as any).exit()
} catch (err) {
// exiting Pythonia can get a bit messy: try/catch or not,
// you *will* see warnings and tracebacks in the console
}
process.exit(0)
})
app.get("/debug", (req, res) => {
res.write(JSON.stringify({
nbTotal: pending.total,
nbPending: pending.queue.length,
queue: pending.queue,
}))
res.end()
})
app.get("/", async (req, res) => {
// naive implementation: we say we are out of capacity
if (pending.queue.length >= maxParallelRequests) {
res.write("sorry, max nb of parallel requests reached")
res.end()
return
}
// alternative approach: kill old queries
// while (pending.queue.length > maxParallelRequests) {
// endRequest(pending.queue[0], 'max nb of parallel request reached')
// }
const id = `${pending.total++}`
console.log(`new request ${id}`)
pending.queue.push(id)
const prefix = `<html><head>${css}${script}`
res.write(prefix)
req.on("close", function() {
endRequest(id, "browser ended the connection")
})
// for testing we kill after some delay
setTimeout(() => {
endRequest(id, `timed out after ${timeoutInSec}s`)
}, timeoutInSec * 1000)
const finalPrompt = `# Context
Generate a webpage written in English about: ${req.query.prompt}.
# Documentation
${daisy}
# Guidelines
- Do not write a tutorial or repeat the instruction, but directly write the final code within a script tag
- Use a color scheme consistent with the brief and theme
- You need to use Tailwind CSS and DaisyUI for the UI, pure vanilla JS and AlpineJS for the JS.
- You vanilla JS code will be written directly inside the page, using <script type="text/javascript">...</script>
- You MUST use English, not Latin! (I repeat: do NOT write lorem ipsum!)
- No need to write code comments, and try to make the code compact (short function names etc)
- Use a central layout by wrapping everything in a \`<div class="flex flex-col justify-center">\`
# Result output
${prefix}`
try {
// be careful: if you input a prompt which is too large, you may experience a timeout
const inputTokens = await llm.tokenize(finalPrompt)
console.log("initializing the generator (may take 30s or more)")
const generator = await llm.generate(inputTokens)
console.log("generator initialized, beginning token streaming..")
for await (const token of generator) {
if (!pending.queue.includes(id)) {
break
}
const tmp = await llm.detokenize(token)
process.stdout.write(tmp)
res.write(tmp)
}
endRequest(id, `normal end of the LLM stream for request ${id}`)
} catch (e) {
endRequest(id, `premature end of the LLM stream for request ${id} (${e})`)
}
try {
res.end()
} catch (err) {
console.log(`couldn't end the HTTP stream for request ${id} (${err})`)
}
})
app.listen(port, () => { console.log(`Open http://localhost:${port}/?prompt=a%20landing%20page%20for%20a%20company%20called%20Hugging%20Face`) })
|