jbilcke-hf HF staff commited on
Commit
ec93dcb
·
1 Parent(s): b4d51ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -29
app.py CHANGED
@@ -2,7 +2,6 @@
2
  #!/usr/bin/env python
3
 
4
  import os
5
- import random
6
  import gradio as gr
7
  import numpy as np
8
  from PIL import Image
@@ -29,16 +28,9 @@ if torch.cuda.is_available():
29
  pipe.fuse_lora()
30
  else:
31
  pipe = None
32
-
33
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
34
- if randomize_seed:
35
- seed = random.randint(0, MAX_SEED)
36
- return seed
37
-
38
 
39
  def generate(prompt: str,
40
  negative_prompt: str = '',
41
- use_negative_prompt: bool = False,
42
  seed: int = 0,
43
  width: int = 1024,
44
  height: int = 1024,
@@ -51,9 +43,6 @@ def generate(prompt: str,
51
 
52
  generator = torch.Generator().manual_seed(seed)
53
 
54
- if not use_negative_prompt:
55
- negative_prompt = None # type: ignore
56
-
57
  image = pipe(prompt=prompt,
58
  negative_prompt=negative_prompt,
59
  width=width,
@@ -93,19 +82,17 @@ with gr.Blocks() as demo:
93
  )
94
  result = gr.Image(label='Result', show_label=False, type="base64")
95
 
96
- use_negative_prompt = gr.Checkbox(label='Use negative prompt', value=False)
97
  negative_prompt = gr.Text(
98
  label='Negative prompt',
99
  max_lines=1,
100
  placeholder='Enter a negative prompt',
101
- visible=False,
102
  )
103
  seed = gr.Slider(label='Seed',
104
  minimum=0,
105
  maximum=MAX_SEED,
106
  step=1,
107
  value=0)
108
- randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
109
 
110
  width = gr.Slider(
111
  label='Width',
@@ -133,19 +120,10 @@ with gr.Blocks() as demo:
133
  maximum=8,
134
  step=1,
135
  value=4)
136
-
137
- use_negative_prompt.change(
138
- fn=lambda x: gr.update(visible=x),
139
- inputs=use_negative_prompt,
140
- outputs=negative_prompt,
141
- queue=False,
142
- api_name=False,
143
- )
144
 
145
  inputs = [
146
  prompt,
147
  negative_prompt,
148
- use_negative_prompt,
149
  seed,
150
  width,
151
  height,
@@ -154,12 +132,6 @@ with gr.Blocks() as demo:
154
  secret_token,
155
  ]
156
  prompt.submit(
157
- fn=randomize_seed_fn,
158
- inputs=[seed, randomize_seed],
159
- outputs=seed,
160
- queue=False,
161
- api_name=False,
162
- ).then(
163
  fn=generate,
164
  inputs=inputs,
165
  outputs=result,
 
2
  #!/usr/bin/env python
3
 
4
  import os
 
5
  import gradio as gr
6
  import numpy as np
7
  from PIL import Image
 
28
  pipe.fuse_lora()
29
  else:
30
  pipe = None
 
 
 
 
 
 
31
 
32
  def generate(prompt: str,
33
  negative_prompt: str = '',
 
34
  seed: int = 0,
35
  width: int = 1024,
36
  height: int = 1024,
 
43
 
44
  generator = torch.Generator().manual_seed(seed)
45
 
 
 
 
46
  image = pipe(prompt=prompt,
47
  negative_prompt=negative_prompt,
48
  width=width,
 
82
  )
83
  result = gr.Image(label='Result', show_label=False, type="base64")
84
 
 
85
  negative_prompt = gr.Text(
86
  label='Negative prompt',
87
  max_lines=1,
88
  placeholder='Enter a negative prompt',
89
+ visible=True,
90
  )
91
  seed = gr.Slider(label='Seed',
92
  minimum=0,
93
  maximum=MAX_SEED,
94
  step=1,
95
  value=0)
 
96
 
97
  width = gr.Slider(
98
  label='Width',
 
120
  maximum=8,
121
  step=1,
122
  value=4)
 
 
 
 
 
 
 
 
123
 
124
  inputs = [
125
  prompt,
126
  negative_prompt,
 
127
  seed,
128
  width,
129
  height,
 
132
  secret_token,
133
  ]
134
  prompt.submit(
 
 
 
 
 
 
135
  fn=generate,
136
  inputs=inputs,
137
  outputs=result,