Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,29 @@ import PIL
|
|
10 |
from PIL import Image
|
11 |
from typing import Tuple
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
net=BriaRMBG()
|
14 |
-
# model_path = "./model1.pth"
|
15 |
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
|
16 |
if torch.cuda.is_available():
|
17 |
net.load_state_dict(torch.load(model_path))
|
@@ -20,7 +41,7 @@ else:
|
|
20 |
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
21 |
net.eval()
|
22 |
|
23 |
-
|
24 |
def resize_image(image):
|
25 |
image = image.convert('RGB')
|
26 |
model_input_size = (1024, 1024)
|
@@ -28,10 +49,10 @@ def resize_image(image):
|
|
28 |
return image
|
29 |
|
30 |
|
31 |
-
def process(
|
32 |
-
|
|
|
33 |
# prepare input
|
34 |
-
orig_image = Image.fromarray(image)
|
35 |
w,h = orig_im_size = orig_image.size
|
36 |
image = resize_image(orig_image)
|
37 |
im_np = np.array(image)
|
@@ -55,52 +76,10 @@ def process(image):
|
|
55 |
# paste the mask on the original image
|
56 |
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
57 |
new_im.paste(orig_image, mask=pil_im)
|
58 |
-
# new_orig_image = orig_image.convert('RGBA')
|
59 |
-
|
60 |
-
return new_im
|
61 |
-
# return [new_orig_image, new_im]
|
62 |
-
|
63 |
-
|
64 |
-
# block = gr.Blocks().queue()
|
65 |
-
|
66 |
-
# with block:
|
67 |
-
# gr.Markdown("## BRIA RMBG 1.4")
|
68 |
-
# gr.HTML('''
|
69 |
-
# <p style="margin-bottom: 10px; font-size: 94%">
|
70 |
-
# This is a demo for BRIA RMBG 1.4 that using
|
71 |
-
# <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
72 |
-
# </p>
|
73 |
-
# ''')
|
74 |
-
# with gr.Row():
|
75 |
-
# with gr.Column():
|
76 |
-
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
77 |
-
# # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
|
78 |
-
# run_button = gr.Button(value="Run")
|
79 |
-
|
80 |
-
# with gr.Column():
|
81 |
-
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
|
82 |
-
# ips = [input_image]
|
83 |
-
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
84 |
-
|
85 |
-
# block.launch(debug = True)
|
86 |
|
87 |
-
|
88 |
|
89 |
-
gr.
|
90 |
-
gr.HTML('''
|
91 |
-
<p style="margin-bottom: 10px; font-size: 94%">
|
92 |
-
This is a demo for BRIA RMBG 1.4 that using
|
93 |
-
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
94 |
-
</p>
|
95 |
-
''')
|
96 |
-
title = "Background Removal"
|
97 |
-
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
|
98 |
-
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
|
99 |
-
"""
|
100 |
-
examples = [['./input.jpg'],]
|
101 |
-
# output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
|
102 |
-
# demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
|
103 |
-
demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
demo.launch(share=False)
|
|
|
10 |
from PIL import Image
|
11 |
from typing import Tuple
|
12 |
|
13 |
+
from io import BytesIO
|
14 |
+
import base64
|
15 |
+
import re
|
16 |
+
|
17 |
+
# Regex pattern to match data URI scheme
|
18 |
+
data_uri_pattern = re.compile(r'data:image/(png|jpeg|jpg|webp);base64,')
|
19 |
+
|
20 |
+
def readb64(b64):
|
21 |
+
# Remove any data URI scheme prefix with regex
|
22 |
+
b64 = data_uri_pattern.sub("", b64)
|
23 |
+
# Decode and open the image with PIL
|
24 |
+
img = Image.open(BytesIO(base64.b64decode(b64)))
|
25 |
+
return img
|
26 |
+
|
27 |
+
# convert from PIL to base64
|
28 |
+
def writeb64(image):
|
29 |
+
buffered = BytesIO()
|
30 |
+
image.save(buffered, format="PNG")
|
31 |
+
b64image = base64.b64encode(buffered.getvalue())
|
32 |
+
b64image_str = b64image.decode("utf-8")
|
33 |
+
return b64image_str
|
34 |
+
|
35 |
net=BriaRMBG()
|
|
|
36 |
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
|
37 |
if torch.cuda.is_available():
|
38 |
net.load_state_dict(torch.load(model_path))
|
|
|
41 |
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
42 |
net.eval()
|
43 |
|
44 |
+
|
45 |
def resize_image(image):
|
46 |
image = image.convert('RGB')
|
47 |
model_input_size = (1024, 1024)
|
|
|
49 |
return image
|
50 |
|
51 |
|
52 |
+
def process(image_base64):
|
53 |
+
orig_image = readb64(image_base64)
|
54 |
+
|
55 |
# prepare input
|
|
|
56 |
w,h = orig_im_size = orig_image.size
|
57 |
image = resize_image(orig_image)
|
58 |
im_np = np.array(image)
|
|
|
76 |
# paste the mask on the original image
|
77 |
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
78 |
new_im.paste(orig_image, mask=pil_im)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
return writeb64(new_im)
|
81 |
|
82 |
+
demo = gr.Interface(fn=process, inputs="text", outputs="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
demo.launch(share=False)
|