Spaces:
Running
Running
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import re | |
| from typing import Optional, Tuple, Type | |
| import torch | |
| from accelerate.logging import get_logger | |
| from ..constants import FINETRAINERS_LOG_LEVEL | |
| from .hooks import HookRegistry, ModelHook | |
| logger = get_logger("finetrainers") # pylint: disable=invalid-name | |
| logger.setLevel(FINETRAINERS_LOG_LEVEL) | |
| # fmt: off | |
| _SUPPORTED_PYTORCH_LAYERS = ( | |
| torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d, | |
| torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d, | |
| torch.nn.Linear, | |
| ) | |
| _DEFAULT_SKIP_MODULES_PATTERN = ("pos_embed", "patch_embed", "norm") | |
| # fmt: on | |
| class LayerwiseUpcastingHook(ModelHook): | |
| r""" | |
| A hook that casts the weights of a module to a high precision dtype for computation, and to a low precision dtype | |
| for storage. This process may lead to quality loss in the output, but can significantly reduce the memory | |
| footprint. | |
| """ | |
| _is_stateful = False | |
| def __init__(self, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool) -> None: | |
| self.storage_dtype = storage_dtype | |
| self.compute_dtype = compute_dtype | |
| self.non_blocking = non_blocking | |
| def initialize_hook(self, module: torch.nn.Module): | |
| module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking) | |
| return module | |
| def pre_forward(self, module: torch.nn.Module, *args, **kwargs): | |
| module.to(dtype=self.compute_dtype, non_blocking=self.non_blocking) | |
| return args, kwargs | |
| def post_forward(self, module: torch.nn.Module, output): | |
| module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking) | |
| return output | |
| def apply_layerwise_upcasting( | |
| module: torch.nn.Module, | |
| storage_dtype: torch.dtype, | |
| compute_dtype: torch.dtype, | |
| skip_modules_pattern: Optional[Tuple[str]] = _DEFAULT_SKIP_MODULES_PATTERN, | |
| skip_modules_classes: Optional[Tuple[Type[torch.nn.Module]]] = None, | |
| non_blocking: bool = False, | |
| _prefix: str = "", | |
| ) -> None: | |
| r""" | |
| Applies layerwise upcasting to a given module. The module expected here is a Diffusers ModelMixin but it can be any | |
| nn.Module using diffusers layers or pytorch primitives. | |
| Args: | |
| module (`torch.nn.Module`): | |
| The module whose leaf modules will be cast to a high precision dtype for computation, and to a low | |
| precision dtype for storage. | |
| storage_dtype (`torch.dtype`): | |
| The dtype to cast the module to before/after the forward pass for storage. | |
| compute_dtype (`torch.dtype`): | |
| The dtype to cast the module to during the forward pass for computation. | |
| skip_modules_pattern (`Tuple[str]`, defaults to `["pos_embed", "patch_embed", "norm"]`): | |
| A list of patterns to match the names of the modules to skip during the layerwise upcasting process. | |
| skip_modules_classes (`Tuple[Type[torch.nn.Module]]`, defaults to `None`): | |
| A list of module classes to skip during the layerwise upcasting process. | |
| non_blocking (`bool`, defaults to `False`): | |
| If `True`, the weight casting operations are non-blocking. | |
| """ | |
| if skip_modules_classes is None and skip_modules_pattern is None: | |
| apply_layerwise_upcasting_hook(module, storage_dtype, compute_dtype, non_blocking) | |
| return | |
| should_skip = (skip_modules_classes is not None and isinstance(module, skip_modules_classes)) or ( | |
| skip_modules_pattern is not None and any(re.search(pattern, _prefix) for pattern in skip_modules_pattern) | |
| ) | |
| if should_skip: | |
| logger.debug(f'Skipping layerwise upcasting for layer "{_prefix}"') | |
| return | |
| if isinstance(module, _SUPPORTED_PYTORCH_LAYERS): | |
| logger.debug(f'Applying layerwise upcasting to layer "{_prefix}"') | |
| apply_layerwise_upcasting_hook(module, storage_dtype, compute_dtype, non_blocking) | |
| return | |
| for name, submodule in module.named_children(): | |
| layer_name = f"{_prefix}.{name}" if _prefix else name | |
| apply_layerwise_upcasting( | |
| submodule, | |
| storage_dtype, | |
| compute_dtype, | |
| skip_modules_pattern, | |
| skip_modules_classes, | |
| non_blocking, | |
| _prefix=layer_name, | |
| ) | |
| def apply_layerwise_upcasting_hook( | |
| module: torch.nn.Module, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool | |
| ) -> None: | |
| r""" | |
| Applies a `LayerwiseUpcastingHook` to a given module. | |
| Args: | |
| module (`torch.nn.Module`): | |
| The module to attach the hook to. | |
| storage_dtype (`torch.dtype`): | |
| The dtype to cast the module to before the forward pass. | |
| compute_dtype (`torch.dtype`): | |
| The dtype to cast the module to during the forward pass. | |
| non_blocking (`bool`): | |
| If `True`, the weight casting operations are non-blocking. | |
| """ | |
| registry = HookRegistry.check_if_exists_or_initialize(module) | |
| hook = LayerwiseUpcastingHook(storage_dtype, compute_dtype, non_blocking) | |
| registry.register_hook(hook, "layerwise_upcasting") | |