|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
from glob import glob |
|
import math |
|
import os |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from pathlib import Path |
|
from typing import Any, Dict, Tuple, List |
|
|
|
import torch |
|
import wandb |
|
from diffusers import FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel |
|
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution |
|
from diffusers.training_utils import cast_training_params |
|
from diffusers.utils import export_to_video |
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card |
|
from huggingface_hub import create_repo, upload_folder |
|
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict |
|
from torch.utils.data import DataLoader |
|
from tqdm.auto import tqdm |
|
|
|
|
|
from args import get_args |
|
from dataset_simple import LatentEmbedDataset |
|
|
|
import sys |
|
from utils import print_memory, reset_memory |
|
|
|
|
|
|
|
|
|
def get_cosine_annealing_lr_scheduler( |
|
optimizer: torch.optim.Optimizer, |
|
warmup_steps: int, |
|
total_steps: int, |
|
): |
|
def lr_lambda(step): |
|
if step < warmup_steps: |
|
return float(step) / float(max(1, warmup_steps)) |
|
else: |
|
return 0.5 * (1 + np.cos(np.pi * (step - warmup_steps) / (total_steps - warmup_steps))) |
|
|
|
return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda) |
|
|
|
|
|
def save_model_card( |
|
repo_id: str, |
|
videos=None, |
|
base_model: str = None, |
|
validation_prompt=None, |
|
repo_folder=None, |
|
fps=30, |
|
): |
|
widget_dict = [] |
|
if videos is not None and len(videos) > 0: |
|
for i, video in enumerate(videos): |
|
export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4"), fps=fps) |
|
widget_dict.append( |
|
{ |
|
"text": validation_prompt if validation_prompt else " ", |
|
"output": {"url": f"final_video_{i}.mp4"}, |
|
} |
|
) |
|
|
|
model_description = f""" |
|
# Mochi-1 Preview LoRA Finetune |
|
|
|
<Gallery /> |
|
|
|
## Model description |
|
|
|
This is a lora finetune of the Mochi-1 preview model `{base_model}`. |
|
|
|
The model was trained using [CogVideoX Factory](https://github.com/a-r-r-o-w/cogvideox-factory) - a repository containing memory-optimized training scripts for the CogVideoX and Mochi family of models using [TorchAO](https://github.com/pytorch/ao) and [DeepSpeed](https://github.com/microsoft/DeepSpeed). The scripts were adopted from [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py). |
|
|
|
## Download model |
|
|
|
[Download LoRA]({repo_id}/tree/main) in the Files & Versions tab. |
|
|
|
## Usage |
|
|
|
Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed. |
|
|
|
```py |
|
from diffusers import MochiPipeline |
|
from diffusers.utils import export_to_video |
|
import torch |
|
|
|
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview") |
|
pipe.load_lora_weights("CHANGE_ME") |
|
pipe.enable_model_cpu_offload() |
|
|
|
with torch.autocast("cuda", torch.bfloat16): |
|
video = pipe( |
|
prompt="CHANGE_ME", |
|
guidance_scale=6.0, |
|
num_inference_steps=64, |
|
height=480, |
|
width=848, |
|
max_sequence_length=256, |
|
output_type="np" |
|
).frames[0] |
|
export_to_video(video) |
|
``` |
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers. |
|
|
|
""" |
|
model_card = load_or_create_model_card( |
|
repo_id_or_path=repo_id, |
|
from_training=True, |
|
license="apache-2.0", |
|
base_model=base_model, |
|
prompt=validation_prompt, |
|
model_description=model_description, |
|
widget=widget_dict, |
|
) |
|
tags = [ |
|
"text-to-video", |
|
"diffusers-training", |
|
"diffusers", |
|
"lora", |
|
"mochi-1-preview", |
|
"mochi-1-preview-diffusers", |
|
"template:sd-lora", |
|
] |
|
|
|
model_card = populate_model_card(model_card, tags=tags) |
|
model_card.save(os.path.join(repo_folder, "README.md")) |
|
|
|
|
|
def log_validation( |
|
pipe: MochiPipeline, |
|
args: Dict[str, Any], |
|
pipeline_args: Dict[str, Any], |
|
epoch, |
|
wandb_run: str = None, |
|
is_final_validation: bool = False, |
|
): |
|
print( |
|
f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}." |
|
) |
|
phase_name = "test" if is_final_validation else "validation" |
|
|
|
if not args.enable_model_cpu_offload: |
|
pipe = pipe.to("cuda") |
|
|
|
|
|
generator = torch.manual_seed(args.seed) if args.seed else None |
|
|
|
videos = [] |
|
with torch.autocast("cuda", torch.bfloat16, cache_enabled=False): |
|
for _ in range(args.num_validation_videos): |
|
video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0] |
|
videos.append(video) |
|
|
|
video_filenames = [] |
|
for i, video in enumerate(videos): |
|
prompt = ( |
|
pipeline_args["prompt"][:25] |
|
.replace(" ", "_") |
|
.replace(" ", "_") |
|
.replace("'", "_") |
|
.replace('"', "_") |
|
.replace("/", "_") |
|
) |
|
filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4") |
|
export_to_video(video, filename, fps=30) |
|
video_filenames.append(filename) |
|
|
|
if wandb_run: |
|
wandb.log( |
|
{ |
|
phase_name: [ |
|
wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}", fps=30) |
|
for i, filename in enumerate(video_filenames) |
|
] |
|
} |
|
) |
|
|
|
return videos |
|
|
|
|
|
|
|
|
|
def cast_dit(model, dtype): |
|
for name, module in model.named_modules(): |
|
if isinstance(module, torch.nn.Linear): |
|
assert any( |
|
n in name for n in ["time_embed", "proj_out", "blocks", "norm_out"] |
|
), f"Unexpected linear layer: {name}" |
|
module.to(dtype=dtype) |
|
elif isinstance(module, torch.nn.Conv2d): |
|
module.to(dtype=dtype) |
|
return model |
|
|
|
|
|
def save_checkpoint(model, optimizer, lr_scheduler, global_step, checkpoint_path): |
|
lora_state_dict = get_peft_model_state_dict(model) |
|
torch.save( |
|
{ |
|
"state_dict": lora_state_dict, |
|
"optimizer": optimizer.state_dict(), |
|
"lr_scheduler": lr_scheduler.state_dict(), |
|
"global_step": global_step, |
|
}, |
|
checkpoint_path, |
|
) |
|
|
|
|
|
class CollateFunction: |
|
def __init__(self, caption_dropout: float = None) -> None: |
|
self.caption_dropout = caption_dropout |
|
|
|
def __call__(self, samples: List[Tuple[dict, torch.Tensor]]) -> Dict[str, torch.Tensor]: |
|
ldists = torch.cat([data[0]["ldist"] for data in samples], dim=0) |
|
z = DiagonalGaussianDistribution(ldists).sample() |
|
assert torch.isfinite(z).all() |
|
|
|
|
|
eps = torch.randn_like(z) |
|
sigma = torch.rand(z.shape[:1], device="cpu", dtype=torch.float32) |
|
|
|
prompt_embeds = torch.cat([data[1]["prompt_embeds"] for data in samples], dim=0) |
|
prompt_attention_mask = torch.cat([data[1]["prompt_attention_mask"] for data in samples], dim=0) |
|
if self.caption_dropout and random.random() < self.caption_dropout: |
|
prompt_embeds.zero_() |
|
prompt_attention_mask = prompt_attention_mask.long() |
|
prompt_attention_mask.zero_() |
|
prompt_attention_mask = prompt_attention_mask.bool() |
|
|
|
return dict( |
|
z=z, eps=eps, sigma=sigma, prompt_embeds=prompt_embeds, prompt_attention_mask=prompt_attention_mask |
|
) |
|
|
|
|
|
def main(args): |
|
if not torch.cuda.is_available(): |
|
raise ValueError("Not supported without CUDA.") |
|
|
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
|
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, |
|
exist_ok=True, |
|
).repo_id |
|
|
|
|
|
transformer = MochiTransformer3DModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="transformer", |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="scheduler" |
|
) |
|
|
|
transformer.requires_grad_(False) |
|
transformer.to("cuda") |
|
if args.gradient_checkpointing: |
|
transformer.enable_gradient_checkpointing() |
|
if args.cast_dit: |
|
transformer = cast_dit(transformer, torch.bfloat16) |
|
if args.compile_dit: |
|
transformer.compile() |
|
|
|
|
|
transformer_lora_config = LoraConfig( |
|
r=args.rank, |
|
lora_alpha=args.lora_alpha, |
|
init_lora_weights="gaussian", |
|
target_modules=args.target_modules, |
|
) |
|
transformer.add_adapter(transformer_lora_config) |
|
|
|
|
|
|
|
if args.allow_tf32 and torch.cuda.is_available(): |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = args.learning_rate * args.train_batch_size |
|
|
|
cast_training_params([transformer], dtype=torch.float32) |
|
|
|
|
|
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) |
|
num_trainable_parameters = sum(param.numel() for param in transformer_lora_parameters) |
|
optimizer = torch.optim.AdamW(transformer_lora_parameters, lr=args.learning_rate, weight_decay=args.weight_decay) |
|
|
|
|
|
train_vids = list(sorted(glob(f"{args.data_root}/*.mp4"))) |
|
train_vids = [v for v in train_vids if not v.endswith(".recon.mp4")] |
|
print(f"Found {len(train_vids)} training videos in {args.data_root}") |
|
assert len(train_vids) > 0, f"No training data found in {args.data_root}" |
|
|
|
collate_fn = CollateFunction(caption_dropout=args.caption_dropout) |
|
train_dataset = LatentEmbedDataset(train_vids, repeat=1) |
|
train_dataloader = DataLoader( |
|
train_dataset, |
|
collate_fn=collate_fn, |
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
pin_memory=args.pin_memory, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = len(train_dataloader) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_cosine_annealing_lr_scheduler( |
|
optimizer, warmup_steps=args.lr_warmup_steps, total_steps=args.max_train_steps |
|
) |
|
|
|
|
|
num_update_steps_per_epoch = len(train_dataloader) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
wandb_run = None |
|
if args.report_to == "wandb": |
|
tracker_name = args.tracker_name or "mochi-1-lora" |
|
wandb_run = wandb.init(project=tracker_name, config=vars(args)) |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu", weights_only=True) |
|
if "global_step" in checkpoint: |
|
global_step = checkpoint["global_step"] |
|
if "optimizer" in checkpoint: |
|
optimizer.load_state_dict(checkpoint["optimizer"]) |
|
if "lr_scheduler" in checkpoint: |
|
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) |
|
|
|
set_peft_model_state_dict(transformer, checkpoint["state_dict"]) |
|
|
|
print(f"Resuming from checkpoint: {args.resume_from_checkpoint}") |
|
print(f"Resuming from global step: {global_step}") |
|
else: |
|
global_step = 0 |
|
|
|
print("===== Memory before training =====") |
|
reset_memory("cuda") |
|
print_memory("cuda") |
|
|
|
|
|
total_batch_size = args.train_batch_size |
|
print("***** Running training *****") |
|
print(f" Num trainable parameters = {num_trainable_parameters}") |
|
print(f" Num examples = {len(train_dataset)}") |
|
print(f" Num batches each epoch = {len(train_dataloader)}") |
|
print(f" Num epochs = {args.num_train_epochs}") |
|
print(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
print(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
first_epoch = 0 |
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=global_step, |
|
desc="Steps", |
|
) |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
transformer.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
with torch.no_grad(): |
|
z = batch["z"].to("cuda") |
|
eps = batch["eps"].to("cuda") |
|
sigma = batch["sigma"].to("cuda") |
|
prompt_embeds = batch["prompt_embeds"].to("cuda") |
|
prompt_attention_mask = batch["prompt_attention_mask"].to("cuda") |
|
|
|
sigma_bcthw = sigma[:, None, None, None, None] |
|
|
|
|
|
z_sigma = (1 - sigma_bcthw) * z + sigma_bcthw * eps |
|
ut = z - eps |
|
|
|
|
|
|
|
|
|
timesteps = (1 - sigma) * scheduler.config.num_train_timesteps |
|
|
|
with torch.autocast("cuda", torch.bfloat16): |
|
model_pred = transformer( |
|
hidden_states=z_sigma, |
|
encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=prompt_attention_mask, |
|
timestep=timesteps, |
|
return_dict=False, |
|
)[0] |
|
assert model_pred.shape == z.shape |
|
loss = F.mse_loss(model_pred.float(), ut.float()) |
|
loss.backward() |
|
|
|
optimizer.step() |
|
optimizer.zero_grad() |
|
lr_scheduler.step() |
|
|
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
last_lr = lr_scheduler.get_last_lr()[0] if lr_scheduler is not None else args.learning_rate |
|
logs = {"loss": loss.detach().item(), "lr": last_lr} |
|
progress_bar.set_postfix(**logs) |
|
if wandb_run: |
|
wandb_run.log(logs, step=global_step) |
|
|
|
if args.checkpointing_steps is not None and global_step % args.checkpointing_steps == 0: |
|
print(f"Saving checkpoint at step {global_step}") |
|
checkpoint_path = os.path.join(args.output_dir, f"checkpoint-{global_step}.pt") |
|
save_checkpoint( |
|
transformer, |
|
optimizer, |
|
lr_scheduler, |
|
global_step, |
|
checkpoint_path, |
|
) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0: |
|
print("===== Memory before validation =====") |
|
print_memory("cuda") |
|
|
|
transformer.eval() |
|
pipe = MochiPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
|
|
if args.enable_slicing: |
|
pipe.vae.enable_slicing() |
|
if args.enable_tiling: |
|
pipe.vae.enable_tiling() |
|
if args.enable_model_cpu_offload: |
|
pipe.enable_model_cpu_offload() |
|
|
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) |
|
for validation_prompt in validation_prompts: |
|
pipeline_args = { |
|
"prompt": validation_prompt, |
|
"guidance_scale": 6.0, |
|
"num_inference_steps": 64, |
|
"height": args.height, |
|
"width": args.width, |
|
"max_sequence_length": 256, |
|
} |
|
log_validation( |
|
pipe=pipe, |
|
args=args, |
|
pipeline_args=pipeline_args, |
|
epoch=epoch, |
|
wandb_run=wandb_run, |
|
) |
|
|
|
print("===== Memory after validation =====") |
|
print_memory("cuda") |
|
reset_memory("cuda") |
|
|
|
del pipe.text_encoder |
|
del pipe.vae |
|
del pipe |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
transformer.train() |
|
|
|
transformer.eval() |
|
transformer_lora_layers = get_peft_model_state_dict(transformer) |
|
MochiPipeline.save_lora_weights(save_directory=args.output_dir, transformer_lora_layers=transformer_lora_layers) |
|
|
|
|
|
del transformer |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
validation_outputs = [] |
|
if args.validation_prompt and args.num_validation_videos > 0: |
|
print("===== Memory before testing =====") |
|
print_memory("cuda") |
|
reset_memory("cuda") |
|
|
|
pipe = MochiPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
|
|
if args.enable_slicing: |
|
pipe.vae.enable_slicing() |
|
if args.enable_tiling: |
|
pipe.vae.enable_tiling() |
|
if args.enable_model_cpu_offload: |
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
lora_scaling = args.lora_alpha / args.rank |
|
pipe.load_lora_weights(args.output_dir, adapter_name="mochi-lora") |
|
pipe.set_adapters(["mochi-lora"], [lora_scaling]) |
|
|
|
|
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) |
|
for validation_prompt in validation_prompts: |
|
pipeline_args = { |
|
"prompt": validation_prompt, |
|
"guidance_scale": 6.0, |
|
"num_inference_steps": 64, |
|
"height": args.height, |
|
"width": args.width, |
|
"max_sequence_length": 256, |
|
} |
|
|
|
video = log_validation( |
|
pipe=pipe, |
|
args=args, |
|
pipeline_args=pipeline_args, |
|
epoch=epoch, |
|
wandb_run=wandb_run, |
|
is_final_validation=True, |
|
) |
|
validation_outputs.extend(video) |
|
|
|
print("===== Memory after testing =====") |
|
print_memory("cuda") |
|
reset_memory("cuda") |
|
torch.cuda.synchronize("cuda") |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
videos=validation_outputs, |
|
base_model=args.pretrained_model_name_or_path, |
|
validation_prompt=args.validation_prompt, |
|
repo_folder=args.output_dir, |
|
fps=args.fps, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["*.bin"], |
|
) |
|
print(f"Params pushed to {repo_id}.") |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args() |
|
main(args) |
|
|