File size: 43,240 Bytes
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
import functools
import json
import math
import os
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union

import datasets.distributed
import diffusers
import torch
import torch.backends
import transformers
import wandb
from diffusers import DiffusionPipeline
from diffusers.hooks import apply_layerwise_casting
from diffusers.training_utils import cast_training_params
from diffusers.utils import export_to_video
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict
from tqdm import tqdm

from ... import data, logging, optimizer, parallel, patches, utils
from ...config import TrainingType
from ...state import State, TrainState


if TYPE_CHECKING:
    from ...args import BaseArgs
    from ...models import ModelSpecification


logger = logging.get_logger()


class SFTTrainer:
    def __init__(self, args: "BaseArgs", model_specification: "ModelSpecification") -> None:
        self.args = args
        self.state = State()
        self.state.train_state = TrainState()

        # Tokenizers
        self.tokenizer = None
        self.tokenizer_2 = None
        self.tokenizer_3 = None

        # Text encoders
        self.text_encoder = None
        self.text_encoder_2 = None
        self.text_encoder_3 = None

        # Denoisers
        self.transformer = None
        self.unet = None

        # Autoencoders
        self.vae = None

        # Scheduler
        self.scheduler = None

        # Optimizer & LR scheduler
        self.optimizer = None
        self.lr_scheduler = None

        # Checkpoint manager
        self.checkpointer = None

        self._init_distributed()
        self._init_config_options()

        # Perform any patches that might be necessary for training to work as expected
        patches.perform_patches_for_training(self.args, self.state.parallel_backend)

        self.model_specification = model_specification

    def run(self) -> None:
        try:
            self._prepare_models()
            self._prepare_trainable_parameters()
            self._prepare_for_training()
            self._prepare_dataset()
            self._prepare_checkpointing()
            self._train()
            # trainer._evaluate()
        except Exception as e:
            logger.error(f"Error during training: {e}")
            self.state.parallel_backend.destroy()
            raise e

    def _prepare_models(self) -> None:
        logger.info("Initializing models")

        diffusion_components = self.model_specification.load_diffusion_models()
        self._set_components(diffusion_components)

        if self.state.parallel_backend.pipeline_parallel_enabled:
            raise NotImplementedError(
                "Pipeline parallelism is not supported yet. This will be supported in the future."
            )

    def _prepare_trainable_parameters(self) -> None:
        logger.info("Initializing trainable parameters")

        parallel_backend = self.state.parallel_backend

        if self.args.training_type == TrainingType.FULL_FINETUNE:
            logger.info("Finetuning transformer with no additional parameters")
            utils.set_requires_grad([self.transformer], True)
        else:
            logger.info("Finetuning transformer with PEFT parameters")
            utils.set_requires_grad([self.transformer], False)

        # Layerwise upcasting must be applied before adding the LoRA adapter.
        # If we don't perform this before moving to device, we might OOM on the GPU. So, best to do it on
        # CPU for now, before support is added in Diffusers for loading and enabling layerwise upcasting directly.
        if self.args.training_type == "lora" and "transformer" in self.args.layerwise_upcasting_modules:
            apply_layerwise_casting(
                self.transformer,
                storage_dtype=self.args.layerwise_upcasting_storage_dtype,
                compute_dtype=self.args.transformer_dtype,
                skip_modules_pattern=self.args.layerwise_upcasting_skip_modules_pattern,
                non_blocking=True,
            )

        transformer_lora_config = None
        if self.args.training_type == TrainingType.LORA:
            transformer_lora_config = LoraConfig(
                r=self.args.rank,
                lora_alpha=self.args.lora_alpha,
                init_lora_weights=True,
                target_modules=self.args.target_modules,
            )
            self.transformer.add_adapter(transformer_lora_config)

        # # TODO(aryan): it might be nice to add some assertions here to make sure that lora parameters are still in fp32
        # # even if layerwise upcasting. Would be nice to have a test as well
        # self.register_saving_loading_hooks(transformer_lora_config)

        # Make sure the trainable params are in float32 if data sharding is not enabled. For FSDP, we need all
        # parameters to be of the same dtype.
        if self.args.training_type == TrainingType.LORA and not parallel_backend.data_sharding_enabled:
            cast_training_params([self.transformer], dtype=torch.float32)

    def _prepare_for_training(self) -> None:
        # 1. Apply parallelism
        parallel_backend = self.state.parallel_backend
        world_mesh = parallel_backend.get_mesh()
        model_specification = self.model_specification

        if parallel_backend.context_parallel_enabled:
            raise NotImplementedError(
                "Context parallelism is not supported yet. This will be supported in the future."
            )

        if parallel_backend.tensor_parallel_enabled:
            # TODO(aryan): handle fp8 from TorchAO here
            model_specification.apply_tensor_parallel(
                backend=parallel.ParallelBackendEnum.PTD,
                device_mesh=parallel_backend.get_mesh()["tp"],
                transformer=self.transformer,
            )

        # Enable gradient checkpointing
        if self.args.gradient_checkpointing:
            # TODO(aryan): support other checkpointing types
            utils.apply_activation_checkpointing(self.transformer, checkpointing_type="full")

        # Enable DDP, FSDP or HSDP
        if parallel_backend.data_sharding_enabled:
            # TODO(aryan): remove this when supported
            if self.args.parallel_backend == "accelerate":
                raise NotImplementedError("Data sharding is not supported with Accelerate yet.")

            if parallel_backend.data_replication_enabled:
                logger.info("Applying HSDP to the model")
            else:
                logger.info("Applying FSDP to the model")

            # Apply FSDP or HSDP
            if parallel_backend.data_replication_enabled or parallel_backend.context_parallel_enabled:
                dp_mesh_names = ("dp_replicate", "dp_shard_cp")
            else:
                dp_mesh_names = ("dp_shard_cp",)

            parallel.apply_fsdp2_ptd(
                model=self.transformer,
                dp_mesh=world_mesh[dp_mesh_names],
                param_dtype=self.args.transformer_dtype,
                reduce_dtype=torch.float32,
                output_dtype=None,
                pp_enabled=parallel_backend.pipeline_parallel_enabled,
                cpu_offload=False,  # TODO(aryan): needs to be tested and allowed for enabling later
            )
        elif parallel_backend.data_replication_enabled:
            logger.info("Applying DDP to the model")

            if world_mesh.ndim > 1:
                raise ValueError("DDP not supported for > 1D parallelism")

            parallel_backend.apply_ddp(self.transformer, world_mesh)

        self._move_components_to_device()

        # 2. Prepare optimizer and lr scheduler
        # For training LoRAs, we can be a little more optimal. Currently, the OptimizerWrapper only accepts torch::nn::Module.
        # This causes us to loop over all the parameters (even ones that don't require gradients, as in LoRA) at each optimizer
        # step. This is OK (see https://github.com/pytorch/pytorch/blob/2f40f789dafeaa62c4e4b90dbf4a900ff6da2ca4/torch/optim/sgd.py#L85-L99)
        # but can be optimized a bit by maybe creating a simple wrapper module encompassing the actual parameters that require
        # gradients. TODO(aryan): look into it in the future.
        model_parts = [self.transformer]
        self.state.num_trainable_parameters = sum(
            p.numel() for m in model_parts for p in m.parameters() if p.requires_grad
        )

        # Setup distributed optimizer and lr scheduler
        logger.info("Initializing optimizer and lr scheduler")
        self.state.train_state = TrainState()
        self.optimizer = optimizer.get_optimizer(
            parallel_backend=self.args.parallel_backend,
            name=self.args.optimizer,
            model_parts=model_parts,
            learning_rate=self.args.lr,
            beta1=self.args.beta1,
            beta2=self.args.beta2,
            beta3=self.args.beta3,
            epsilon=self.args.epsilon,
            weight_decay=self.args.weight_decay,
            fused=False,
        )
        self.lr_scheduler = optimizer.get_lr_scheduler(
            parallel_backend=self.args.parallel_backend,
            name=self.args.lr_scheduler,
            optimizer=self.optimizer,
            num_warmup_steps=self.args.lr_warmup_steps,
            num_training_steps=self.args.train_steps,
            # TODO(aryan): handle last_epoch
        )
        self.optimizer, self.lr_scheduler = parallel_backend.prepare_optimizer(self.optimizer, self.lr_scheduler)

        # 3. Initialize trackers, directories and repositories
        self._init_logging()
        self._init_trackers()
        self._init_directories_and_repositories()

    def _prepare_dataset(self) -> None:
        logger.info("Initializing dataset and dataloader")

        with open(self.args.dataset_config, "r") as file:
            dataset_configs = json.load(file)["datasets"]
        logger.info(f"Training configured to use {len(dataset_configs)} datasets")

        datasets = []
        for config in dataset_configs:
            data_root = config.pop("data_root", None)
            dataset_file = config.pop("dataset_file", None)
            dataset_type = config.pop("dataset_type")

            if data_root is not None and dataset_file is not None:
                raise ValueError("Both data_root and dataset_file cannot be provided in the same dataset config.")

            dataset_name_or_root = data_root or dataset_file
            dataset = data.initialize_dataset(dataset_name_or_root, dataset_type, streaming=True, infinite=True)

            if not dataset._precomputable_once and self.args.precomputation_once:
                raise ValueError(
                    f"Dataset {dataset_name_or_root} does not support precomputing all embeddings at once."
                )

            logger.info(f"Initialized dataset: {dataset_name_or_root}")
            dataset = self.state.parallel_backend.prepare_dataset(dataset)
            dataset = data.wrap_iterable_dataset_for_preprocessing(dataset, dataset_type, config)
            datasets.append(dataset)

        dataset = data.combine_datasets(datasets, buffer_size=self.args.dataset_shuffle_buffer_size, shuffle=True)
        dataloader = self.state.parallel_backend.prepare_dataloader(
            dataset, batch_size=1, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.pin_memory
        )

        self.dataset = dataset
        self.dataloader = dataloader

    def _prepare_checkpointing(self) -> None:
        parallel_backend = self.state.parallel_backend

        def save_model_hook(state_dict: Dict[str, Any]) -> None:
            if parallel_backend.is_main_process:
                if self.args.training_type == TrainingType.LORA:
                    state_dict = get_peft_model_state_dict(self.transformer, state_dict)
                    self.model_specification._save_lora_weights(self.args.output_dir, state_dict, self.scheduler)
                elif self.args.training_type == TrainingType.FULL_FINETUNE:
                    self.model_specification._save_model(
                        self.args.output_dir, self.transformer, state_dict, self.scheduler
                    )
            parallel_backend.wait_for_everyone()

        enable_state_checkpointing = self.args.checkpointing_steps > 0
        self.checkpointer = utils.PTDCheckpointManager(
            dataloader=self.dataloader,
            model_parts=[self.transformer],
            optimizers=self.optimizer,
            schedulers=self.lr_scheduler,
            states={"train_state": self.state.train_state},
            checkpointing_steps=self.args.checkpointing_steps,
            checkpointing_limit=self.args.checkpointing_limit,
            output_dir=self.args.output_dir,
            enable=enable_state_checkpointing,
            _callback_fn=save_model_hook,
        )

        resume_from_checkpoint = self.args.resume_from_checkpoint
        if resume_from_checkpoint == "latest":
            resume_from_checkpoint = -1
        if resume_from_checkpoint is not None:
            self.checkpointer.load(resume_from_checkpoint)

    def _train(self) -> None:
        logger.info("Starting training")

        parallel_backend = self.state.parallel_backend
        train_state = self.state.train_state
        device = parallel_backend.device

        memory_statistics = utils.get_memory_statistics()
        logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")

        global_batch_size = self.args.batch_size * parallel_backend._dp_degree
        info = {
            "trainable parameters": self.state.num_trainable_parameters,
            "train steps": self.args.train_steps,
            "per-replica batch size": self.args.batch_size,
            "global batch size": global_batch_size,
            "gradient accumulation steps": self.args.gradient_accumulation_steps,
        }
        logger.info(f"Training configuration: {json.dumps(info, indent=4)}")

        progress_bar = tqdm(
            range(0, self.args.train_steps),
            initial=train_state.step,
            desc="Training steps",
            disable=not parallel_backend.is_local_main_process,
        )

        generator = torch.Generator(device=device)
        if self.args.seed is not None:
            generator = generator.manual_seed(self.args.seed)
        self.state.generator = generator

        patch_size = 1
        if (
            getattr(self.transformer.config, "patch_size", None) is not None
            and getattr(self.transformer.config, "patch_size_t", None) is not None
        ):
            patch_size = self.transformer.config.patch_size * self.transformer.config.patch_size_t
        elif isinstance(getattr(self.transformer.config, "patch_size", None), int):
            patch_size = self.transformer.config.patch_size
        elif isinstance(getattr(self.transformer.config, "patch_size", None), (list, tuple)):
            patch_size = math.prod(self.transformer.config.patch_size)

        scheduler_sigmas = utils.get_scheduler_sigmas(self.scheduler)
        scheduler_sigmas = (
            scheduler_sigmas.to(device=device, dtype=torch.float32) if scheduler_sigmas is not None else None
        )
        scheduler_alphas = utils.get_scheduler_alphas(self.scheduler)
        scheduler_alphas = (
            scheduler_alphas.to(device=device, dtype=torch.float32) if scheduler_alphas is not None else None
        )
        timesteps_buffer = []

        self.transformer.train()
        data_iterator = iter(self.dataloader)

        preprocessor = data.DistributedDataPreprocessor(
            rank=parallel_backend.rank,
            num_items=self.args.precomputation_items,
            processor_fn={
                "condition": self.model_specification.prepare_conditions,
                "latent": functools.partial(
                    self.model_specification.prepare_latents, compute_posterior=not self.args.precomputation_once
                ),
            },
            save_dir=self.args.precomputation_dir,
        )
        precomputed_condition_iterator: Iterable[Dict[str, Any]] = None
        precomputed_latent_iterator: Iterable[Dict[str, Any]] = None
        sampler = data.ResolutionSampler(
            batch_size=self.args.batch_size, dim_keys=self.model_specification._resolution_dim_keys
        )
        requires_gradient_step = True
        accumulated_loss = 0.0

        while (
            train_state.step < self.args.train_steps and train_state.observed_data_samples < self.args.max_data_samples
        ):
            # 1. Load & preprocess data if required
            if preprocessor.requires_data:
                # TODO(aryan): We should do the following here:
                # - Force checkpoint the trainable models, optimizers, schedulers and train state
                # - Do the precomputation
                # - Load the checkpointed models, optimizers, schedulers and train state back, and continue training
                # This way we can be more memory efficient again, since the latest rewrite of precomputation removed
                # this logic.
                precomputed_condition_iterator, precomputed_latent_iterator = self._prepare_data(
                    preprocessor, data_iterator
                )

            # 2. Prepare batch
            try:
                condition_item = next(precomputed_condition_iterator)
                latent_item = next(precomputed_latent_iterator)
                sampler.consume(condition_item, latent_item)
            except StopIteration:
                if requires_gradient_step:
                    self.optimizer.step()
                    self.lr_scheduler.step()
                    requires_gradient_step = False
                logger.info("Data exhausted. Exiting training loop.")
                break

            if sampler.is_ready:
                condition_batch, latent_batch = sampler.get_batch()
                condition_model_conditions = self.model_specification.collate_conditions(condition_batch)
                latent_model_conditions = self.model_specification.collate_latents(latent_batch)
            else:
                continue

            train_state.step += 1
            train_state.observed_data_samples += self.args.batch_size * parallel_backend._dp_degree

            lmc_latents = latent_model_conditions["latents"]
            train_state.observed_num_tokens += math.prod(lmc_latents.shape[:-1]) // patch_size

            logger.debug(f"Starting training step ({train_state.step}/{self.args.train_steps})")

            utils.align_device_and_dtype(latent_model_conditions, device, self.args.transformer_dtype)
            utils.align_device_and_dtype(condition_model_conditions, device, self.args.transformer_dtype)
            latent_model_conditions = utils.make_contiguous(latent_model_conditions)
            condition_model_conditions = utils.make_contiguous(condition_model_conditions)

            # 3. Forward pass
            sigmas = utils.prepare_sigmas(
                scheduler=self.scheduler,
                sigmas=scheduler_sigmas,
                batch_size=self.args.batch_size,
                num_train_timesteps=self.scheduler.config.num_train_timesteps,
                flow_weighting_scheme=self.args.flow_weighting_scheme,
                flow_logit_mean=self.args.flow_logit_mean,
                flow_logit_std=self.args.flow_logit_std,
                flow_mode_scale=self.args.flow_mode_scale,
                device=device,
                generator=self.state.generator,
            )
            sigmas = utils.expand_tensor_dims(sigmas, latent_model_conditions["latents"].ndim)

            pred, target, sigmas = self.model_specification.forward(
                transformer=self.transformer,
                scheduler=self.scheduler,
                condition_model_conditions=condition_model_conditions,
                latent_model_conditions=latent_model_conditions,
                sigmas=sigmas,
                compute_posterior=not self.args.precomputation_once,
            )

            timesteps = (sigmas * 1000.0).long()
            weights = utils.prepare_loss_weights(
                scheduler=self.scheduler,
                alphas=scheduler_alphas[timesteps] if scheduler_alphas is not None else None,
                sigmas=sigmas,
                flow_weighting_scheme=self.args.flow_weighting_scheme,
            )
            weights = utils.expand_tensor_dims(weights, pred.ndim)

            # 4. Compute loss & backward pass
            loss = weights.float() * (pred.float() - target.float()).pow(2)
            # Average loss across all but batch dimension
            loss = loss.mean(list(range(1, loss.ndim)))
            # Average loss across batch dimension
            loss = loss.mean()
            if self.args.gradient_accumulation_steps > 1:
                loss = loss / self.args.gradient_accumulation_steps
            loss.backward()
            accumulated_loss += loss.detach().item()
            requires_gradient_step = True

            # 5. Clip gradients
            model_parts = [self.transformer]
            grad_norm = utils.torch._clip_grad_norm_while_handling_failing_dtensor_cases(
                [p for m in model_parts for p in m.parameters()],
                self.args.max_grad_norm,
                foreach=True,
                pp_mesh=parallel_backend.get_mesh("pp") if parallel_backend.pipeline_parallel_enabled else None,
            )

            # 6. Step optimizer & log metrics
            logs = {}

            if train_state.step % self.args.gradient_accumulation_steps == 0:
                # TODO(aryan): revisit no_sync() for FSDP
                # TODO(aryan): average the gradients for accumulation?
                self.optimizer.step()
                self.lr_scheduler.step()
                self.optimizer.zero_grad()

                if grad_norm is not None:
                    logs["grad_norm"] = grad_norm if isinstance(grad_norm, float) else grad_norm.detach().item()
                if (
                    parallel_backend.data_replication_enabled
                    or parallel_backend.data_sharding_enabled
                    or parallel_backend.context_parallel_enabled
                ):
                    dp_cp_mesh = parallel_backend.get_mesh("dp_cp")
                    global_avg_loss, global_max_loss = (
                        parallel.dist_mean(torch.tensor([accumulated_loss], device=device), dp_cp_mesh),
                        parallel.dist_max(torch.tensor([accumulated_loss], device=device), dp_cp_mesh),
                    )
                else:
                    global_avg_loss = global_max_loss = accumulated_loss

                logs["global_avg_loss"] = global_avg_loss
                logs["global_max_loss"] = global_max_loss
                train_state.global_avg_losses.append(global_avg_loss)
                train_state.global_max_losses.append(global_max_loss)
                accumulated_loss = 0.0
                requires_gradient_step = False

            progress_bar.update(1)
            progress_bar.set_postfix(logs)

            timesteps_buffer.extend([(train_state.step, t) for t in timesteps.detach().cpu().numpy().tolist()])

            if train_state.step % self.args.logging_steps == 0:
                # TODO(aryan): handle non-SchedulerWrapper schedulers (probably not required eventually) since they might not be dicts
                # TODO(aryan): causes NCCL hang for some reason. look into later
                # logs.update(self.lr_scheduler.get_last_lr())

                # timesteps_table = wandb.Table(data=timesteps_buffer, columns=["step", "timesteps"])
                # logs["timesteps"] = wandb.plot.scatter(
                #     timesteps_table, "step", "timesteps", title="Timesteps distribution"
                # )
                timesteps_buffer = []

                logs["observed_data_samples"] = train_state.observed_data_samples
                logs["observed_num_tokens"] = train_state.observed_num_tokens

                parallel_backend.log(logs, step=train_state.step)
                train_state.log_steps.append(train_state.step)

            # 7. Save checkpoint if required
            self.checkpointer.save(
                step=train_state.step, _device=device, _is_main_process=parallel_backend.is_main_process
            )

            # 8. Perform validation if required
            if train_state.step % self.args.validation_steps == 0:
                self._validate(step=train_state.step, final_validation=False)

        # 9. Final checkpoint, validation & cleanup
        self.checkpointer.save(
            train_state.step, force=True, _device=device, _is_main_process=parallel_backend.is_main_process
        )
        parallel_backend.wait_for_everyone()
        self._validate(step=train_state.step, final_validation=True)

        self._delete_components()
        memory_statistics = utils.get_memory_statistics()
        logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")

        # 10. Upload artifacts to hub
        if parallel_backend.is_main_process and self.args.push_to_hub:
            upload_folder(
                repo_id=self.state.repo_id,
                folder_path=self.args.output_dir,
                ignore_patterns=[f"{self.checkpointer._prefix}_*"],
            )

        parallel_backend.destroy()

    def _validate(self, step: int, final_validation: bool = False) -> None:
        if self.args.validation_dataset_file is None:
            return

        logger.info("Starting validation")

        # 1. Load validation dataset
        parallel_backend = self.state.parallel_backend
        dp_mesh = parallel_backend.get_mesh("dp_replicate")

        if dp_mesh is not None:
            local_rank, dp_world_size = dp_mesh.get_local_rank(), dp_mesh.size()
        else:
            local_rank, dp_world_size = 0, 1

        dataset = data.ValidationDataset(self.args.validation_dataset_file)
        dataset._data = datasets.distributed.split_dataset_by_node(dataset._data, local_rank, dp_world_size)
        validation_dataloader = data.DPDataLoader(
            local_rank,
            dataset,
            batch_size=1,
            num_workers=self.args.dataloader_num_workers,
            collate_fn=lambda items: items,
        )
        data_iterator = iter(validation_dataloader)
        main_process_prompts_to_filenames = {}  # Used to save model card
        all_processes_artifacts = []  # Used to gather artifacts from all processes

        memory_statistics = utils.get_memory_statistics()
        logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")

        seed = self.args.seed if self.args.seed is not None else 0
        generator = torch.Generator(device=parallel_backend.device).manual_seed(seed)
        pipeline = self._init_pipeline(final_validation=final_validation)

        # 2. Run validation
        # TODO(aryan): when running validation with FSDP, if the number of data points is not divisible by dp_shards, we
        # will hang indefinitely. Either pad the dataset or raise an error early on during initialization if the dataset
        # size is not divisible by dp_shards.
        self.transformer.eval()
        while True:
            validation_data = next(data_iterator, None)
            if validation_data is None:
                break

            logger.debug(
                f"Validating {validation_data=} on rank={parallel_backend.rank}.", local_main_process_only=False
            )

            validation_data = validation_data[0]
            validation_artifacts = self.model_specification.validation(
                pipeline=pipeline, generator=generator, **validation_data
            )

            PROMPT = validation_data["prompt"]
            IMAGE = validation_data.get("image", None)
            VIDEO = validation_data.get("video", None)
            EXPORT_FPS = validation_data.get("export_fps", 30)

            # 2.1. If there are any initial images or videos, they will be logged to keep track of them as
            # conditioning for generation.
            prompt_filename = utils.string_to_filename(PROMPT)[:25]
            artifacts = {
                "input_image": data.ImageArtifact(value=IMAGE),
                "input_video": data.VideoArtifact(value=VIDEO),
            }

            # 2.2. Track the artifacts generated from validation
            for i, validation_artifact in enumerate(validation_artifacts):
                if validation_artifact.value is None:
                    continue
                artifacts.update({f"artifact_{i}": validation_artifact})

            # 2.3. Save the artifacts to the output directory and create appropriate logging objects
            # TODO(aryan): Currently, we only support WandB so we've hardcoded it here. Needs to be revisited.
            for index, (key, artifact) in enumerate(list(artifacts.items())):
                assert isinstance(artifact, (data.ImageArtifact, data.VideoArtifact))
                filename = "validation-" if not final_validation else "final-"
                filename += f"{step}-{parallel_backend.rank}-{index}-{prompt_filename}.{artifact.file_extension}"
                output_filename = os.path.join(self.args.output_dir, filename)

                if parallel_backend.is_main_process and artifact.file_extension == "mp4":
                    main_process_prompts_to_filenames[PROMPT] = filename

                caption = f"{PROMPT} | (filename: {output_filename})"
                if artifact.type == "image" and artifact.value is not None:
                    logger.debug(
                        f"Saving image from rank={parallel_backend.rank} to {output_filename}",
                        local_main_process_only=False,
                    )
                    artifact.value.save(output_filename)
                    all_processes_artifacts.append(wandb.Image(output_filename, caption=caption))
                elif artifact.type == "video" and artifact.value is not None:
                    logger.debug(
                        f"Saving video from rank={parallel_backend.rank} to {output_filename}",
                        local_main_process_only=False,
                    )
                    export_to_video(artifact.value, output_filename, fps=EXPORT_FPS)
                    all_processes_artifacts.append(wandb.Video(output_filename, caption=caption))

        # 3. Cleanup & log artifacts
        parallel_backend.wait_for_everyone()

        # Remove all hooks that might have been added during pipeline initialization to the models
        pipeline.remove_all_hooks()
        del pipeline

        utils.free_memory()
        memory_statistics = utils.get_memory_statistics()
        logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
        torch.cuda.reset_peak_memory_stats(parallel_backend.device)

        # Gather artifacts from all processes. We also need to flatten them since each process returns a list of artifacts.
        # TODO(aryan): probably should only all gather from dp mesh process group
        all_artifacts = [None] * parallel_backend.world_size
        torch.distributed.all_gather_object(all_artifacts, all_processes_artifacts)
        all_artifacts = [artifact for artifacts in all_artifacts for artifact in artifacts]

        if parallel_backend.is_main_process:
            tracker_key = "final" if final_validation else "validation"
            artifact_log_dict = {}

            image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
            if len(image_artifacts) > 0:
                artifact_log_dict["images"] = image_artifacts
            video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
            if len(video_artifacts) > 0:
                artifact_log_dict["videos"] = video_artifacts
            parallel_backend.log({tracker_key: artifact_log_dict}, step=step)

            if self.args.push_to_hub and final_validation:
                video_filenames = list(main_process_prompts_to_filenames.values())
                prompts = list(main_process_prompts_to_filenames.keys())
                utils.save_model_card(
                    args=self.args, repo_id=self.state.repo_id, videos=video_filenames, validation_prompts=prompts
                )

        parallel_backend.wait_for_everyone()
        if not final_validation:
            self.transformer.train()

    def _evaluate(self) -> None:
        raise NotImplementedError("Evaluation has not been implemented yet.")

    def _init_distributed(self) -> None:
        # TODO: Accelerate disables native_amp for MPS. Probably need to do the same with implementation.
        world_size = int(os.environ["WORLD_SIZE"])

        # TODO(aryan): handle other backends
        backend_cls: parallel.ParallelBackendType = parallel.get_parallel_backend_cls(self.args.parallel_backend)
        self.state.parallel_backend = backend_cls(
            world_size=world_size,
            pp_degree=self.args.pp_degree,
            dp_degree=self.args.dp_degree,
            dp_shards=self.args.dp_shards,
            cp_degree=self.args.cp_degree,
            tp_degree=self.args.tp_degree,
            backend="nccl",
            timeout=self.args.init_timeout,
            logging_dir=self.args.logging_dir,
            output_dir=self.args.output_dir,
            gradient_accumulation_steps=self.args.gradient_accumulation_steps,
        )

        if self.args.seed is not None:
            world_mesh = self.state.parallel_backend.get_mesh()
            utils.enable_determinism(self.args.seed, world_mesh)

    def _init_logging(self) -> None:
        transformers_log_level = transformers.utils.logging.set_verbosity_error
        diffusers_log_level = diffusers.utils.logging.set_verbosity_error

        if self.args.verbose == 0:
            if self.state.parallel_backend.is_local_main_process:
                transformers_log_level = transformers.utils.logging.set_verbosity_warning
                diffusers_log_level = diffusers.utils.logging.set_verbosity_warning
        elif self.args.verbose == 1:
            if self.state.parallel_backend.is_local_main_process:
                transformers_log_level = transformers.utils.logging.set_verbosity_info
                diffusers_log_level = diffusers.utils.logging.set_verbosity_info
        elif self.args.verbose == 2:
            if self.state.parallel_backend.is_local_main_process:
                transformers_log_level = transformers.utils.logging.set_verbosity_debug
                diffusers_log_level = diffusers.utils.logging.set_verbosity_debug
        else:
            transformers_log_level = transformers.utils.logging.set_verbosity_debug
            diffusers_log_level = diffusers.utils.logging.set_verbosity_debug

        transformers_log_level()
        diffusers_log_level()

        logging._set_parallel_backend(self.state.parallel_backend)
        logger.info("Initialized FineTrainers")

    def _init_trackers(self) -> None:
        # TODO(aryan): handle multiple trackers
        trackers = ["wandb"]
        experiment_name = self.args.tracker_name or "finetrainers-experiment"
        self.state.parallel_backend.initialize_trackers(
            trackers, experiment_name=experiment_name, config=self._get_training_info(), log_dir=self.args.logging_dir
        )

    def _init_directories_and_repositories(self) -> None:
        if self.state.parallel_backend.is_main_process:
            self.args.output_dir = Path(self.args.output_dir)
            self.args.output_dir.mkdir(parents=True, exist_ok=True)
            self.state.output_dir = Path(self.args.output_dir)

            if self.args.push_to_hub:
                repo_id = self.args.hub_model_id or Path(self.args.output_dir).name
                self.state.repo_id = create_repo(token=self.args.hub_token, repo_id=repo_id, exist_ok=True).repo_id

    def _init_config_options(self) -> None:
        # Enable TF32 for faster training on Ampere GPUs: https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
        if self.args.allow_tf32 and torch.cuda.is_available():
            torch.backends.cuda.matmul.allow_tf32 = True

    def _move_components_to_device(
        self, components: Optional[List[torch.nn.Module]] = None, device: Optional[Union[str, torch.device]] = None
    ) -> None:
        if device is None:
            device = self.state.parallel_backend.device
        if components is None:
            components = [self.text_encoder, self.text_encoder_2, self.text_encoder_3, self.transformer, self.vae]
        components = utils.get_non_null_items(components)
        components = list(filter(lambda x: hasattr(x, "to"), components))
        for component in components:
            component.to(device)

    def _set_components(self, components: Dict[str, Any]) -> None:
        # fmt: off
        component_names = ["tokenizer", "tokenizer_2", "tokenizer_3", "text_encoder", "text_encoder_2", "text_encoder_3", "transformer", "unet", "vae", "scheduler"]
        # fmt: on

        for component_name in component_names:
            existing_component = getattr(self, component_name, None)
            new_component = components.get(component_name, existing_component)
            setattr(self, component_name, new_component)

    def _delete_components(self, component_names: Optional[List[str]] = None) -> None:
        if component_names is None:
            # fmt: off
            component_names = ["tokenizer", "tokenizer_2", "tokenizer_3", "text_encoder", "text_encoder_2", "text_encoder_3", "transformer", "unet", "vae", "scheduler"]
            # fmt: on

        for component_name in component_names:
            setattr(self, component_name, None)

        utils.free_memory()
        utils.synchronize_device()

    def _init_pipeline(self, final_validation: bool = False) -> DiffusionPipeline:
        parallel_backend = self.state.parallel_backend
        module_names = ["text_encoder", "text_encoder_2", "text_encoder_3", "transformer", "vae"]

        if not final_validation:
            module_names.remove("transformer")
            pipeline = self.model_specification.load_pipeline(
                tokenizer=self.tokenizer,
                tokenizer_2=self.tokenizer_2,
                tokenizer_3=self.tokenizer_3,
                text_encoder=self.text_encoder,
                text_encoder_2=self.text_encoder_2,
                text_encoder_3=self.text_encoder_3,
                # TODO(aryan): handle unwrapping for compiled modules
                # transformer=utils.unwrap_model(accelerator, self.transformer),
                transformer=self.transformer,
                vae=self.vae,
                enable_slicing=self.args.enable_slicing,
                enable_tiling=self.args.enable_tiling,
                enable_model_cpu_offload=self.args.enable_model_cpu_offload,
                training=True,
            )
        else:
            # TODO(aryan): this branch does not work yet, needs to be implemented
            self._delete_components()

            # Load the transformer weights from the final checkpoint if performing full-finetune
            transformer = None
            if self.args.training_type == TrainingType.FULL_FINETUNE:
                transformer = self.model_specification.load_diffusion_models()["transformer"]

            pipeline = self.model_specification.load_pipeline(
                transformer=transformer,
                enable_slicing=self.args.enable_slicing,
                enable_tiling=self.args.enable_tiling,
                enable_model_cpu_offload=self.args.enable_model_cpu_offload,
                training=False,
                device=parallel_backend.device,
            )

            # Load the LoRA weights if performing LoRA finetuning
            if self.args.training_type == TrainingType.LORA:
                pipeline.load_lora_weights(self.args.output_dir)

        components = {module_name: getattr(pipeline, module_name, None) for module_name in module_names}
        self._set_components(components)
        self._move_components_to_device(list(components.values()))
        return pipeline

    def _prepare_data(self, preprocessor: data.DistributedDataPreprocessor, data_iterator):
        logger.info("Precomputed condition & latent data exhausted. Loading & preprocessing new data.")
        if self.args.precomputation_once:
            consume_fn = preprocessor.consume_once
        else:
            consume_fn = preprocessor.consume

        condition_components = self.model_specification.load_condition_models()
        component_names = list(condition_components.keys())
        component_modules = list(condition_components.values())
        self._set_components(condition_components)
        self._move_components_to_device(component_modules)
        precomputed_condition_iterator = consume_fn(
            "condition",
            components=condition_components,
            data_iterator=data_iterator,
            generator=self.state.generator,
            cache_samples=True,
        )
        self._delete_components(component_names)
        del condition_components, component_names, component_modules

        latent_components = self.model_specification.load_latent_models()
        if self.vae is not None:
            if self.args.enable_slicing:
                self.vae.enable_slicing()
            if self.args.enable_tiling:
                self.vae.enable_tiling()
        component_names = list(latent_components.keys())
        component_modules = list(latent_components.values())
        self._set_components(latent_components)
        self._move_components_to_device(component_modules)
        precomputed_latent_iterator = consume_fn(
            "latent",
            components=latent_components,
            data_iterator=data_iterator,
            generator=self.state.generator,
            use_cached_samples=True,
            drop_samples=True,
        )
        self._delete_components(component_names)
        del latent_components, component_names, component_modules

        return precomputed_condition_iterator, precomputed_latent_iterator

    def _get_training_info(self) -> Dict[str, Any]:
        info = self.args.to_dict()

        # Removing flow matching arguments when not using flow-matching objective
        diffusion_args = info.get("diffusion_arguments", {})
        scheduler_name = self.scheduler.__class__.__name__ if self.scheduler is not None else ""
        if scheduler_name != "FlowMatchEulerDiscreteScheduler":
            filtered_diffusion_args = {k: v for k, v in diffusion_args.items() if "flow" not in k}
        else:
            filtered_diffusion_args = diffusion_args

        info.update({"diffusion_arguments": filtered_diffusion_args})
        return info