support latents into the diffusion decoder
Browse files- api.py +13 -8
- eval_multiple.py +1 -1
- models/autoregressive.py +29 -15
- models/diffusion_decoder.py +12 -5
- models/new_autoregressive.py +0 -286
api.py
CHANGED
|
@@ -117,7 +117,7 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
|
| 117 |
cond_mels.append(cond_mel)
|
| 118 |
cond_mels = torch.stack(cond_mels, dim=1)
|
| 119 |
|
| 120 |
-
output_seq_len = mel_codes.shape[
|
| 121 |
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
| 122 |
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
| 123 |
|
|
@@ -151,11 +151,6 @@ class TextToSpeech:
|
|
| 151 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
| 152 |
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
| 153 |
|
| 154 |
-
self.diffusion_next = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
| 155 |
-
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
| 156 |
-
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
| 157 |
-
self.diffusion_next.load_state_dict(torch.load('.models/diffusion_next.pth'))
|
| 158 |
-
|
| 159 |
self.vocoder = UnivNetGenerator().cpu()
|
| 160 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
| 161 |
self.vocoder.eval(inference=True)
|
|
@@ -223,12 +218,22 @@ class TextToSpeech:
|
|
| 223 |
self.clip = self.clip.cpu()
|
| 224 |
del samples
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
print("Performing vocoding..")
|
| 227 |
wav_candidates = []
|
| 228 |
self.diffusion = self.diffusion.cuda()
|
| 229 |
self.vocoder = self.vocoder.cuda()
|
| 230 |
for b in range(best_results.shape[0]):
|
| 231 |
codes = best_results[b].unsqueeze(0)
|
|
|
|
| 232 |
|
| 233 |
# Find the first occurrence of the "calm" token and trim the codes to that.
|
| 234 |
ctokens = 0
|
|
@@ -238,10 +243,10 @@ class TextToSpeech:
|
|
| 238 |
else:
|
| 239 |
ctokens = 0
|
| 240 |
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
| 241 |
-
|
| 242 |
break
|
| 243 |
|
| 244 |
-
mel = do_spectrogram_diffusion(self.diffusion, diffuser,
|
| 245 |
wav = self.vocoder.inference(mel)
|
| 246 |
wav_candidates.append(wav.cpu())
|
| 247 |
self.diffusion = self.diffusion.cpu()
|
|
|
|
| 117 |
cond_mels.append(cond_mel)
|
| 118 |
cond_mels = torch.stack(cond_mels, dim=1)
|
| 119 |
|
| 120 |
+
output_seq_len = mel_codes.shape[1]*4*24000//22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
| 121 |
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
| 122 |
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
| 123 |
|
|
|
|
| 151 |
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
| 152 |
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
self.vocoder = UnivNetGenerator().cpu()
|
| 155 |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
| 156 |
self.vocoder.eval(inference=True)
|
|
|
|
| 218 |
self.clip = self.clip.cpu()
|
| 219 |
del samples
|
| 220 |
|
| 221 |
+
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
| 222 |
+
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
| 223 |
+
# results, but will increase memory usage.
|
| 224 |
+
self.autoregressive = self.autoregressive.cuda()
|
| 225 |
+
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
|
| 226 |
+
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
|
| 227 |
+
return_latent=True, clip_inputs=False)
|
| 228 |
+
self.autoregressive = self.autoregressive.cpu()
|
| 229 |
+
|
| 230 |
print("Performing vocoding..")
|
| 231 |
wav_candidates = []
|
| 232 |
self.diffusion = self.diffusion.cuda()
|
| 233 |
self.vocoder = self.vocoder.cuda()
|
| 234 |
for b in range(best_results.shape[0]):
|
| 235 |
codes = best_results[b].unsqueeze(0)
|
| 236 |
+
latents = best_latents[b].unsqueeze(0)
|
| 237 |
|
| 238 |
# Find the first occurrence of the "calm" token and trim the codes to that.
|
| 239 |
ctokens = 0
|
|
|
|
| 243 |
else:
|
| 244 |
ctokens = 0
|
| 245 |
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
| 246 |
+
latents = latents[:, :k]
|
| 247 |
break
|
| 248 |
|
| 249 |
+
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, voice_samples, temperature=diffusion_temperature)
|
| 250 |
wav = self.vocoder.inference(mel)
|
| 251 |
wav_candidates.append(wav.cpu())
|
| 252 |
self.diffusion = self.diffusion.cpu()
|
eval_multiple.py
CHANGED
|
@@ -7,7 +7,7 @@ from utils.audio import load_audio
|
|
| 7 |
|
| 8 |
if __name__ == '__main__':
|
| 9 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
| 10 |
-
outpath = 'D:\\tmp\\tortoise-tts-eval\\
|
| 11 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
| 12 |
|
| 13 |
os.makedirs(outpath, exist_ok=True)
|
|
|
|
| 7 |
|
| 8 |
if __name__ == '__main__':
|
| 9 |
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
| 10 |
+
outpath = 'D:\\tmp\\tortoise-tts-eval\\diverse_new_decoder_1'
|
| 11 |
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
| 12 |
|
| 13 |
os.makedirs(outpath, exist_ok=True)
|
models/autoregressive.py
CHANGED
|
@@ -362,7 +362,7 @@ class UnifiedVoice(nn.Module):
|
|
| 362 |
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
| 363 |
return mel_input_tokens
|
| 364 |
|
| 365 |
-
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False):
|
| 366 |
if second_inputs is not None:
|
| 367 |
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
| 368 |
else:
|
|
@@ -374,6 +374,10 @@ class UnifiedVoice(nn.Module):
|
|
| 374 |
|
| 375 |
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
|
| 376 |
enc = self.final_norm(enc)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
first_logits = enc[:, :first_inputs.shape[1]]
|
| 378 |
first_logits = first_head(first_logits)
|
| 379 |
first_logits = first_logits.permute(0,2,1)
|
|
@@ -385,7 +389,8 @@ class UnifiedVoice(nn.Module):
|
|
| 385 |
else:
|
| 386 |
return first_logits
|
| 387 |
|
| 388 |
-
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, text_first=True, raw_mels=None, return_attentions=False
|
|
|
|
| 389 |
"""
|
| 390 |
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
| 391 |
(actuated by `text_first`).
|
|
@@ -396,19 +401,23 @@ class UnifiedVoice(nn.Module):
|
|
| 396 |
mel_inputs: long tensor, (b,m)
|
| 397 |
wav_lengths: long tensor, (b,)
|
| 398 |
raw_mels: MEL float tensor (b,80,s)
|
| 399 |
-
"""
|
| 400 |
-
assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}'
|
| 401 |
-
assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}'
|
| 402 |
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
|
|
|
|
|
|
|
| 412 |
|
| 413 |
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
|
| 414 |
conds = []
|
|
@@ -427,10 +436,15 @@ class UnifiedVoice(nn.Module):
|
|
| 427 |
mel_inp = mel_codes
|
| 428 |
mel_emb = self.mel_embedding(mel_inp)
|
| 429 |
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
|
|
|
|
| 430 |
if text_first:
|
| 431 |
-
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
|
|
|
|
|
|
|
| 432 |
else:
|
| 433 |
-
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions)
|
|
|
|
|
|
|
| 434 |
|
| 435 |
if return_attentions:
|
| 436 |
return mel_logits
|
|
|
|
| 362 |
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
| 363 |
return mel_input_tokens
|
| 364 |
|
| 365 |
+
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
|
| 366 |
if second_inputs is not None:
|
| 367 |
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
| 368 |
else:
|
|
|
|
| 374 |
|
| 375 |
enc = gpt_out.last_hidden_state[:, 1:] # The first logit is tied to the speech_conditioning_input
|
| 376 |
enc = self.final_norm(enc)
|
| 377 |
+
|
| 378 |
+
if return_latent:
|
| 379 |
+
return enc[:, speech_conditioning_inputs.shape[1]:speech_conditioning_inputs.shape[1]+first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
|
| 380 |
+
|
| 381 |
first_logits = enc[:, :first_inputs.shape[1]]
|
| 382 |
first_logits = first_head(first_logits)
|
| 383 |
first_logits = first_logits.permute(0,2,1)
|
|
|
|
| 389 |
else:
|
| 390 |
return first_logits
|
| 391 |
|
| 392 |
+
def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, text_first=True, raw_mels=None, return_attentions=False,
|
| 393 |
+
return_latent=False, clip_inputs=True):
|
| 394 |
"""
|
| 395 |
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
| 396 |
(actuated by `text_first`).
|
|
|
|
| 401 |
mel_inputs: long tensor, (b,m)
|
| 402 |
wav_lengths: long tensor, (b,)
|
| 403 |
raw_mels: MEL float tensor (b,80,s)
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
+
If return_attentions is specified, only logits are returned.
|
| 406 |
+
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
|
| 407 |
+
If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality.
|
| 408 |
+
"""
|
| 409 |
+
if clip_inputs:
|
| 410 |
+
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
| 411 |
+
# chopping the inputs by the maximum actual length.
|
| 412 |
+
max_text_len = text_lengths.max()
|
| 413 |
+
text_inputs = text_inputs[:, :max_text_len]
|
| 414 |
+
max_mel_len = wav_lengths.max() // self.mel_length_compression
|
| 415 |
+
mel_codes = mel_codes[:, :max_mel_len]
|
| 416 |
+
if raw_mels is not None:
|
| 417 |
+
raw_mels = raw_mels[:, :, :max_mel_len*4]
|
| 418 |
mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
|
| 419 |
+
text_inputs = F.pad(text_inputs, (0,1), value=self.stop_text_token)
|
| 420 |
+
mel_codes = F.pad(mel_codes, (0,1), value=self.stop_mel_token)
|
| 421 |
|
| 422 |
speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
|
| 423 |
conds = []
|
|
|
|
| 436 |
mel_inp = mel_codes
|
| 437 |
mel_emb = self.mel_embedding(mel_inp)
|
| 438 |
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
|
| 439 |
+
|
| 440 |
if text_first:
|
| 441 |
+
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent)
|
| 442 |
+
if return_latent:
|
| 443 |
+
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
| 444 |
else:
|
| 445 |
+
mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent)
|
| 446 |
+
if return_latent:
|
| 447 |
+
return text_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
| 448 |
|
| 449 |
if return_attentions:
|
| 450 |
return mel_logits
|
models/diffusion_decoder.py
CHANGED
|
@@ -176,7 +176,13 @@ class DiffusionTts(nn.Module):
|
|
| 176 |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
| 177 |
)
|
| 178 |
self.code_norm = normalization(model_channels)
|
| 179 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
| 181 |
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2),
|
| 182 |
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
|
@@ -190,6 +196,7 @@ class DiffusionTts(nn.Module):
|
|
| 190 |
DiffusionLayer(model_channels, dropout, num_heads),
|
| 191 |
DiffusionLayer(model_channels, dropout, num_heads),
|
| 192 |
)
|
|
|
|
| 193 |
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
| 194 |
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
|
| 195 |
|
|
@@ -206,7 +213,7 @@ class DiffusionTts(nn.Module):
|
|
| 206 |
groups = {
|
| 207 |
'minicoder': list(self.contextual_embedder.parameters()),
|
| 208 |
'layers': list(self.layers.parameters()),
|
| 209 |
-
'code_converters': list(self.code_embedding.parameters()) + list(self.code_converter.parameters()) + list(self.
|
| 210 |
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
| 211 |
'time_embed': list(self.time_embed.parameters()),
|
| 212 |
}
|
|
@@ -227,7 +234,7 @@ class DiffusionTts(nn.Module):
|
|
| 227 |
cond_emb = conds.mean(dim=-1)
|
| 228 |
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
| 229 |
if is_latent(aligned_conditioning):
|
| 230 |
-
code_emb = self.
|
| 231 |
else:
|
| 232 |
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
| 233 |
code_emb = self.code_converter(code_emb)
|
|
@@ -269,7 +276,7 @@ class DiffusionTts(nn.Module):
|
|
| 269 |
if conditioning_free:
|
| 270 |
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
| 271 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
| 272 |
-
unused_params.extend(list(self.
|
| 273 |
else:
|
| 274 |
if precomputed_aligned_embeddings is not None:
|
| 275 |
code_emb = precomputed_aligned_embeddings
|
|
@@ -278,7 +285,7 @@ class DiffusionTts(nn.Module):
|
|
| 278 |
if is_latent(aligned_conditioning):
|
| 279 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
| 280 |
else:
|
| 281 |
-
unused_params.extend(list(self.
|
| 282 |
|
| 283 |
unused_params.append(self.unconditioned_embedding)
|
| 284 |
|
|
|
|
| 176 |
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
| 177 |
)
|
| 178 |
self.code_norm = normalization(model_channels)
|
| 179 |
+
self.latent_conditioner = nn.Sequential(
|
| 180 |
+
nn.Conv1d(in_latent_channels, model_channels, 3, padding=1),
|
| 181 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
| 182 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
| 183 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
| 184 |
+
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
| 185 |
+
)
|
| 186 |
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
| 187 |
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2),
|
| 188 |
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
|
|
|
| 196 |
DiffusionLayer(model_channels, dropout, num_heads),
|
| 197 |
DiffusionLayer(model_channels, dropout, num_heads),
|
| 198 |
)
|
| 199 |
+
|
| 200 |
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
| 201 |
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
|
| 202 |
|
|
|
|
| 213 |
groups = {
|
| 214 |
'minicoder': list(self.contextual_embedder.parameters()),
|
| 215 |
'layers': list(self.layers.parameters()),
|
| 216 |
+
'code_converters': list(self.code_embedding.parameters()) + list(self.code_converter.parameters()) + list(self.latent_conditioner.parameters()) + list(self.latent_conditioner.parameters()),
|
| 217 |
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
| 218 |
'time_embed': list(self.time_embed.parameters()),
|
| 219 |
}
|
|
|
|
| 234 |
cond_emb = conds.mean(dim=-1)
|
| 235 |
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
| 236 |
if is_latent(aligned_conditioning):
|
| 237 |
+
code_emb = self.latent_conditioner(aligned_conditioning)
|
| 238 |
else:
|
| 239 |
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
| 240 |
code_emb = self.code_converter(code_emb)
|
|
|
|
| 276 |
if conditioning_free:
|
| 277 |
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
| 278 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
| 279 |
+
unused_params.extend(list(self.latent_conditioner.parameters()))
|
| 280 |
else:
|
| 281 |
if precomputed_aligned_embeddings is not None:
|
| 282 |
code_emb = precomputed_aligned_embeddings
|
|
|
|
| 285 |
if is_latent(aligned_conditioning):
|
| 286 |
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
| 287 |
else:
|
| 288 |
+
unused_params.extend(list(self.latent_conditioner.parameters()))
|
| 289 |
|
| 290 |
unused_params.append(self.unconditioned_embedding)
|
| 291 |
|
models/new_autoregressive.py
DELETED
|
@@ -1,286 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
from transformers import GPT2PreTrainedModel, GPT2Config
|
| 5 |
-
from models.xtransformers import TransformerWrapper, Encoder, Decoder
|
| 6 |
-
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 7 |
-
|
| 8 |
-
from models.arch_util import AttentionBlock
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class InferenceModel(GPT2PreTrainedModel):
|
| 12 |
-
"""
|
| 13 |
-
Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with
|
| 14 |
-
this transformer.
|
| 15 |
-
"""
|
| 16 |
-
def __init__(self, model):
|
| 17 |
-
super().__init__(GPT2Config())
|
| 18 |
-
self.transformer = model
|
| 19 |
-
self.context = None
|
| 20 |
-
|
| 21 |
-
def parallelize(self, device_map=None):
|
| 22 |
-
# Not implemented.
|
| 23 |
-
pass
|
| 24 |
-
|
| 25 |
-
def deparallelize(self):
|
| 26 |
-
# Not implemented.
|
| 27 |
-
pass
|
| 28 |
-
|
| 29 |
-
def get_output_embeddings(self):
|
| 30 |
-
assert False, "Unsupported operation."
|
| 31 |
-
|
| 32 |
-
def set_output_embeddings(self, new_embeddings):
|
| 33 |
-
assert False, "Unsupported operation."
|
| 34 |
-
|
| 35 |
-
def store_context(self, context):
|
| 36 |
-
self.context = context
|
| 37 |
-
|
| 38 |
-
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 39 |
-
token_type_ids = kwargs.get("token_type_ids", None)
|
| 40 |
-
# only last token for inputs_ids if past is defined in kwargs
|
| 41 |
-
if past:
|
| 42 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 43 |
-
if token_type_ids is not None:
|
| 44 |
-
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 45 |
-
|
| 46 |
-
attention_mask = kwargs.get("attention_mask", None)
|
| 47 |
-
position_ids = kwargs.get("position_ids", None)
|
| 48 |
-
|
| 49 |
-
if attention_mask is not None and position_ids is None:
|
| 50 |
-
# create position_ids on the fly for batch generation
|
| 51 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 52 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 53 |
-
if past:
|
| 54 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 55 |
-
else:
|
| 56 |
-
position_ids = None
|
| 57 |
-
return {
|
| 58 |
-
"input_ids": input_ids,
|
| 59 |
-
"past_key_values": past,
|
| 60 |
-
"use_cache": kwargs.get("use_cache"),
|
| 61 |
-
"position_ids": position_ids,
|
| 62 |
-
"attention_mask": attention_mask,
|
| 63 |
-
"token_type_ids": token_type_ids,
|
| 64 |
-
}
|
| 65 |
-
|
| 66 |
-
def forward(
|
| 67 |
-
self,
|
| 68 |
-
input_ids=None,
|
| 69 |
-
past_key_values=None,
|
| 70 |
-
attention_mask=None,
|
| 71 |
-
token_type_ids=None,
|
| 72 |
-
position_ids=None,
|
| 73 |
-
head_mask=None,
|
| 74 |
-
inputs_embeds=None,
|
| 75 |
-
encoder_hidden_states=None,
|
| 76 |
-
encoder_attention_mask=None,
|
| 77 |
-
labels=None,
|
| 78 |
-
use_cache=None,
|
| 79 |
-
output_attentions=None,
|
| 80 |
-
output_hidden_states=None,
|
| 81 |
-
return_dict=None,
|
| 82 |
-
):
|
| 83 |
-
assert self.context is not None
|
| 84 |
-
assert inputs_embeds is None # Not supported by this inference model.
|
| 85 |
-
assert labels is None # Training not supported by this inference model.
|
| 86 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 87 |
-
|
| 88 |
-
out = self.transformer.decoder(input_ids, full_context=self.context, return_embeddings=True, past_key_values=past_key_values,
|
| 89 |
-
use_cache=use_cache, expected_seq_len=100)
|
| 90 |
-
if use_cache:
|
| 91 |
-
hidden_states, present_key_values = out
|
| 92 |
-
else:
|
| 93 |
-
hidden_states = out
|
| 94 |
-
present_key_values = None
|
| 95 |
-
logits = self.transformer.decoder.to_logits(hidden_states)
|
| 96 |
-
|
| 97 |
-
if not return_dict:
|
| 98 |
-
return (logits, )
|
| 99 |
-
|
| 100 |
-
return CausalLMOutputWithCrossAttentions(
|
| 101 |
-
loss=None,
|
| 102 |
-
logits=logits,
|
| 103 |
-
past_key_values=present_key_values,
|
| 104 |
-
hidden_states=hidden_states,
|
| 105 |
-
attentions=None,
|
| 106 |
-
cross_attentions=None,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
@staticmethod
|
| 110 |
-
def _reorder_cache(past, beam_idx):
|
| 111 |
-
"""
|
| 112 |
-
This function is used to re-order the :obj:`past_key_values` cache if
|
| 113 |
-
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
| 114 |
-
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
| 115 |
-
"""
|
| 116 |
-
return tuple(
|
| 117 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
| 118 |
-
for layer_past in past
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
class ResBlock(nn.Module):
|
| 123 |
-
"""
|
| 124 |
-
Basic residual convolutional block that uses GroupNorm.
|
| 125 |
-
"""
|
| 126 |
-
def __init__(self, chan):
|
| 127 |
-
super().__init__()
|
| 128 |
-
self.net = nn.Sequential(
|
| 129 |
-
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
| 130 |
-
nn.GroupNorm(chan//8, chan),
|
| 131 |
-
nn.ReLU(),
|
| 132 |
-
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
| 133 |
-
nn.GroupNorm(chan//8, chan)
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
def forward(self, x):
|
| 137 |
-
return F.relu(self.net(x) + x)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
class ConditioningEncoder(nn.Module):
|
| 141 |
-
def __init__(self,
|
| 142 |
-
spec_dim,
|
| 143 |
-
embedding_dim,
|
| 144 |
-
attn_blocks=6,
|
| 145 |
-
num_attn_heads=4,
|
| 146 |
-
do_checkpointing=False):
|
| 147 |
-
super().__init__()
|
| 148 |
-
attn = []
|
| 149 |
-
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2),
|
| 150 |
-
nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2),
|
| 151 |
-
ResBlock(embedding_dim//2),
|
| 152 |
-
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
|
| 153 |
-
for a in range(attn_blocks):
|
| 154 |
-
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
|
| 155 |
-
self.attn = nn.Sequential(*attn)
|
| 156 |
-
self.dim = embedding_dim
|
| 157 |
-
|
| 158 |
-
def forward(self, x):
|
| 159 |
-
h = self.init(x)
|
| 160 |
-
h = self.attn(h)
|
| 161 |
-
return h.mean(dim=2)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
class AutoregressiveCodegen(nn.Module):
|
| 165 |
-
def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, dropout=.1):
|
| 166 |
-
super().__init__()
|
| 167 |
-
assert depth >= 8 # This is the minimum bound to support the context interleaving that happens later.
|
| 168 |
-
|
| 169 |
-
self.START_TOKEN=8192
|
| 170 |
-
self.STOP_TOKEN=8193
|
| 171 |
-
self.START_TEXT_TOKEN = 255
|
| 172 |
-
self.STOP_TEXT_TOKEN = 0
|
| 173 |
-
self.max_text_token_id = num_text_tokens
|
| 174 |
-
self.max_mel_token_id = num_mel_tokens
|
| 175 |
-
self.mel_embedding = ConditioningEncoder(80, model_dim, do_checkpointing=False)
|
| 176 |
-
self.encoder = TransformerWrapper(
|
| 177 |
-
num_tokens=num_text_tokens,
|
| 178 |
-
use_pos_emb=False,
|
| 179 |
-
max_seq_len=-1,
|
| 180 |
-
attn_layers = Encoder(
|
| 181 |
-
depth=depth,
|
| 182 |
-
heads=model_dim//64,
|
| 183 |
-
dim=model_dim,
|
| 184 |
-
attn_dropout=dropout,
|
| 185 |
-
ff_dropout=dropout,
|
| 186 |
-
use_rmsnorm=True,
|
| 187 |
-
ff_glu=True,
|
| 188 |
-
ff_mult=1,
|
| 189 |
-
rotary_pos_emb=True,
|
| 190 |
-
attn_rel_pos_bias=True,
|
| 191 |
-
))
|
| 192 |
-
self.encoder.norm = nn.Identity() # This layer and the next are unused.
|
| 193 |
-
self.encoder.to_logits = nn.Identity()
|
| 194 |
-
self.decoder = TransformerWrapper(
|
| 195 |
-
num_tokens=num_mel_tokens,
|
| 196 |
-
use_pos_emb=False,
|
| 197 |
-
max_seq_len=-1,
|
| 198 |
-
attn_layers=Decoder(
|
| 199 |
-
depth=depth,
|
| 200 |
-
heads=model_dim//64,
|
| 201 |
-
dim=model_dim,
|
| 202 |
-
attn_dropout=dropout,
|
| 203 |
-
ff_dropout=dropout,
|
| 204 |
-
use_rmsnorm=True,
|
| 205 |
-
ff_glu=True,
|
| 206 |
-
ff_mult=1,
|
| 207 |
-
rotary_pos_emb=True,
|
| 208 |
-
cross_attend=True,
|
| 209 |
-
attn_rel_pos_bias=True,
|
| 210 |
-
))
|
| 211 |
-
|
| 212 |
-
def get_grad_norm_parameter_groups(self):
|
| 213 |
-
return {
|
| 214 |
-
'encoder': list(self.encoder.parameters()),
|
| 215 |
-
'decoder': list(self.decoder.parameters()),
|
| 216 |
-
'minicoder': list(self.mel_embedding.parameters()),
|
| 217 |
-
}
|
| 218 |
-
|
| 219 |
-
def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True):
|
| 220 |
-
assert text_codes.max() < self.max_text_token_id and text_codes.min() >= 0, f'Invalid text code encountered: {text_codes.max()}, {text_codes.min()}'
|
| 221 |
-
assert mel_codes.max() < self.max_mel_token_id and mel_codes.min() >= 0, f'Invalid mel code encountered: {mel_codes.max()}, {mel_codes.min()}'
|
| 222 |
-
|
| 223 |
-
# Format mel_codes with a stop token on the end.
|
| 224 |
-
mel_lengths = wav_lengths // 1024 + 1
|
| 225 |
-
for b in range(mel_codes.shape[0]):
|
| 226 |
-
mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN
|
| 227 |
-
mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN)
|
| 228 |
-
|
| 229 |
-
# Build the context
|
| 230 |
-
if len(conditioning_signal.shape) != 4:
|
| 231 |
-
conditioning_signal = conditioning_signal.unsqueeze(1)
|
| 232 |
-
cond_embs = []
|
| 233 |
-
for i in range(conditioning_signal.shape[1]):
|
| 234 |
-
cond_embs.append(self.mel_embedding(conditioning_signal[:, i]))
|
| 235 |
-
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
| 236 |
-
# Since all positional embeddings are relative, it is (probably) important to "fix" the text with some permanent embeddings.
|
| 237 |
-
text_codes = F.pad(text_codes, (1,0), value=self.START_TEXT_TOKEN)
|
| 238 |
-
text_codes = F.pad(text_codes, (0,1), value=self.STOP_TEXT_TOKEN)
|
| 239 |
-
_, enc_text = self.encoder(text_codes, return_hiddens=True)
|
| 240 |
-
# Interleave cond_emb into the first few contexts.
|
| 241 |
-
full_context = enc_text
|
| 242 |
-
full_context[1] = cond_emb
|
| 243 |
-
full_context[3] = cond_emb
|
| 244 |
-
full_context[6] = cond_emb
|
| 245 |
-
|
| 246 |
-
# Execute the decoder
|
| 247 |
-
dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1]
|
| 248 |
-
dec = self.decoder(dec_inputs, full_context=full_context)
|
| 249 |
-
if not return_loss:
|
| 250 |
-
return dec
|
| 251 |
-
loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes)
|
| 252 |
-
return loss_mel
|
| 253 |
-
|
| 254 |
-
def generate(self, conditioning_signal, text_codes, max_tokens=256, **hf_generate_kwargs):
|
| 255 |
-
inference_model = InferenceModel(self)
|
| 256 |
-
# Build the context
|
| 257 |
-
if len(conditioning_signal.shape) != 4:
|
| 258 |
-
conditioning_signal = conditioning_signal.unsqueeze(1)
|
| 259 |
-
cond_embs = []
|
| 260 |
-
for i in range(conditioning_signal.shape[1]):
|
| 261 |
-
cond_embs.append(self.mel_embedding(conditioning_signal[:, i]))
|
| 262 |
-
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
| 263 |
-
text_codes = F.pad(text_codes, (1,0), value=self.START_TEXT_TOKEN)
|
| 264 |
-
text_codes = F.pad(text_codes, (0,1), value=self.STOP_TEXT_TOKEN)
|
| 265 |
-
_, enc_text = self.encoder(text_codes, return_hiddens=True)
|
| 266 |
-
# Interleave cond_emb into the first few contexts.
|
| 267 |
-
full_context = enc_text
|
| 268 |
-
full_context[1] = cond_emb
|
| 269 |
-
full_context[3] = cond_emb
|
| 270 |
-
full_context[6] = cond_emb
|
| 271 |
-
inference_model.store_context(full_context)
|
| 272 |
-
|
| 273 |
-
gen = inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN,
|
| 274 |
-
max_length=max_tokens, output_attentions=False, return_dict_in_generate=True, use_cache=False,
|
| 275 |
-
**hf_generate_kwargs)
|
| 276 |
-
return gen.sequences
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
if __name__ == '__main__':
|
| 280 |
-
codegen = AutoregressiveCodegen(256, 10)
|
| 281 |
-
torch.save(codegen.state_dict(), 'sample.pth')
|
| 282 |
-
#codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200)))
|
| 283 |
-
codegen(torch.randint(0,256, (2,200)),
|
| 284 |
-
torch.randn(2,80,120),
|
| 285 |
-
torch.randint(0,8192, (2,350)),
|
| 286 |
-
torch.tensor([192,350]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|