Spaces:
Sleeping
Sleeping
# AI assistant with a RAG system to query information from | |
# the gwIAS search pipline | |
# using Langchain and deployed with Gradio | |
# Thanks to Pablo Villanueva Domingo for sharing his CAMELS template | |
# https://huggingface.co/spaces/PabloVD/CAMELSDocBot | |
from rag import RAG, load_docs | |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.chat_models import ChatOpenAI | |
import gradio as gr | |
# Load the documentation | |
docs = load_docs() | |
print("Pages loaded:", len(docs)) | |
# LLM model | |
llm = ChatOpenAI(model="gpt-4o-mini") | |
# Embeddings | |
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1" | |
# embed_model = "nvidia/NV-Embed-v2" | |
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model) | |
# RAG chain | |
rag_chain = RAG(llm, docs, embeddings) | |
# Function to handle prompt and query the RAG chain | |
def handle_prompt(message, history): | |
try: | |
# Stream output | |
out = "" | |
for chunk in rag_chain.stream(message): | |
out += chunk | |
yield out | |
except Exception as e: | |
raise gr.Error(f"An error occurred: {str(e)}") | |
if __name__ == "__main__": | |
# Predefined messages and examples | |
description = "AI powered assistant to help with [gwIAS](https://github.com/JayWadekar/gwIAS-HM) gravitational wave search pipeline." | |
greetingsmessage = "Hi, I'm the gwIAS Bot, I'm here to assist you with the search pipeline." | |
example_questions = [ | |
"Can you give me the code for calculating coherent score?", | |
"Which module in the code is used for collecting coincident triggers?", | |
"How are template banks constructed?" | |
] | |
# Define customized Gradio chatbot | |
chatbot = gr.Chatbot([{"role": "assistant", "content": greetingsmessage}], | |
type="messages", | |
avatar_images=["ims/userpic.png", "ims/gwIASlogo.jpg"], | |
height="60vh") | |
# Define Gradio interface | |
demo = gr.ChatInterface(handle_prompt, | |
type="messages", | |
title="gwIAS DocBot", | |
fill_height=True, | |
examples=example_questions, | |
theme=gr.themes.Soft(), | |
description=description, | |
# cache_examples=False, | |
chatbot=chatbot) | |
demo.launch() | |
# https://arxiv.org/html/2405.17400v2 | |
# https://arxiv.org/html/2312.06631v1 | |
# https://arxiv.org/html/2310.15233v2 | |