import gradio as gr import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import requests import base64 from io import BytesIO import os # Define the number of classes num_classes = 2 # Update with the actual number of classes in your dataset # Download model from Hugging Face def download_model(): try: model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path except Exception as e: print(f"Error downloading model: {e}") return None # Load the model from Hugging Face def load_model(model_path): try: model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model except Exception as e: print(f"Error loading model: {e}") return None # Download the model and load it model_path = download_model() model = load_model(model_path) if model_path else None # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def process_image(image_input): try: # Process the image input (URL, local file, or base64) if isinstance(image_input, dict): # Check if the input contains a URL if image_input.get("url"): image_url = image_input["url"] response = requests.get(image_url) image = Image.open(BytesIO(response.content)) # Check if the input contains a file path elif image_input.get("path"): image_path = image_input["path"] image = Image.open(image_path) # Handle base64 if it's included elif image_input.get("data"): image_data = base64.b64decode(image_input["data"]) image = Image.open(BytesIO(image_data)) else: return "Invalid input data format. Please provide a URL or path." # Apply transformations image = transform(image).unsqueeze(0) image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Make the prediction with torch.no_grad(): outputs = model(image) predicted_class = torch.argmax(outputs, dim=1).item() # Return prediction result if predicted_class == 0: return "The photo you've sent is of fall army worm with problem ID 126." elif predicted_class == 1: return "The photo you've sent is of a healthy maize image." else: return "Unexpected class prediction." else: return "Invalid input. Please provide a dictionary with 'url' or 'path'." except Exception as e: print(f"Error processing image: {e}") return f"Error processing image: {e}" # Create the Gradio interface iface = gr.Interface( fn=process_image, inputs=gr.JSON(label="Upload an image (URL or Local Path)"), # Input: JSON to handle URL or path outputs=gr.Textbox(label="Prediction Result"), # Output: Prediction result live=True, title="Maize Anomaly Detection", description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images." ) # Launch the Gradio interface iface.launch(share=True, show_error=True)