import gradio as gr import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image num_classes = 2 def download_model(): model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path def load_model(model_path): model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model model_path = download_model() model = load_model(model_path) transform = transforms.Compose([ transforms.Resize(256), # Resize the image to 256x256 transforms.CenterCrop(224), # Crop the image to 224x224 transforms.ToTensor(), # Convert the image to a Tensor transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def predict(image): image = transform(image).unsqueeze(0) image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) with torch.no_grad(): outputs = model(image) predicted_class = torch.argmax(outputs, dim=1).item() if predicted_class == 0: return "The photo you've sent is of fall army worm with problem ID 126." elif predicted_class == 1: return "The photo you've sent is of a healthy wheat image." else: return "Unexpected class prediction." iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Textbox(), live=True, title="Maize Anomaly Detection", description="Upload an image of maize to detect anomalies like disease or pest infestation." ) iface.launch()