import gradio as gr import torch from torch import nn from torchvision import models, transforms from PIL import Image import requests import base64 from io import BytesIO import os # Define the number of classes num_classes = 2 # Update with the actual number of classes in your dataset # Load the model (assuming you've already downloaded it) def load_model(): try: model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load("path_to_your_model.pth", map_location=torch.device("cpu"))) model.eval() return model except Exception as e: print(f"Error loading model: {e}") return None model = load_model() # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Prediction function def process_image(data): try: # Check if the input contains a base64-encoded string if isinstance(data, dict): if "data" in data: # Base64 decoding image_data = base64.b64decode(data["data"]) image = Image.open(BytesIO(image_data)) elif "url" in data: # URL-based image loading response = requests.get(data["url"]) image = Image.open(BytesIO(response.content)) elif "path" in data: # Local path image loading image = Image.open(data["path"]) else: return "Invalid input data structure." # Validate image if not isinstance(image, Image.Image): return "Invalid image format received." # Apply transformations image = transform(image).unsqueeze(0) # Prediction image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) with torch.no_grad(): outputs = model(image) predicted_class = torch.argmax(outputs, dim=1).item() if predicted_class == 0: return "The photo you've sent is of fall army worm with problem ID 126." elif predicted_class == 1: return "The photo you've sent is of a healthy maize image." else: return "Unexpected class prediction." except Exception as e: return f"Error processing image: {e}" # Create the Gradio interface iface = gr.Interface( fn=process_image, inputs=gr.JSON(label="Upload an image (URL or Local Path)"), # Input: JSON to handle URL or path outputs=gr.Textbox(label="Prediction Result"), # Output: Prediction result live=True, title="Maize Anomaly Detection", description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images." ) # Launch the Gradio interface iface.launch(share=True, show_error=True)