import gradio as gr import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import os import logging import requests from io import BytesIO # Setup logging logging.basicConfig(level=logging.INFO) # Define the number of classes num_classes = 3 # Download model from Hugging Face def download_model(): model_path = hf_hub_download(repo_id="jays009/Resnet3", filename="model.pth") return model_path # Load the model from Hugging Face def load_model(model_path): model = models.resnet50(pretrained=False) num_features = model.fc.in_features model.fc = nn.Sequential( nn.Dropout(0.5), nn.Linear(num_features, 3) # 3 classes ) checkpoint = torch.load(model_path, map_location=torch.device("cpu")) model.load_state_dict(checkpoint['model_state_dict']) # Rename keys to match the model definition state_dict['fc.weight'] = state_dict.pop('fc.1.weight') state_dict['fc.bias'] = state_dict.pop('fc.1.bias') # Load the modified state dict model.load_state_dict(state_dict) model.eval() return model # Path to your model model_path = hf_hub_download(repo_id="jays009/Resnet3", filename="model.pth") model = load_model(model_path) # Download the model and load it model_path = download_model() model = load_model(model_path) # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Prediction function for an uploaded image def predict_from_image_url(image_url): try: # Download the image from the provided URL response = requests.get(image_url) response.raise_for_status() image = Image.open(BytesIO(response.content)) # Apply transformations image_tensor = transform(image).unsqueeze(0) # Perform prediction with torch.no_grad(): outputs = model(image_tensor) predicted_class = torch.argmax(outputs, dim=1).item() # Interpret the result if predicted_class == 0: return {"result": "The photo is of Fall Army Worm with problem ID 126."} elif predicted_class == 1: return {"result": "The photo shows symptoms of Phosphorus Deficiency with Problem ID 142."} elif predicted_class == 2: return {"result": "The photo shows symptoms of Bacterial Leaf Blight with Problem ID 203."} else: return {"error": "Unexpected class prediction."} except Exception as e: return {"error": str(e)} demo = gr.Interface( fn=predict_from_image_url, inputs="text", outputs="json", title="Maize Disease Classification", description="Enter a URL to an image for classification (Fall Army Worm, Phosphorus Deficiency, or Bacterial Leaf Blight).", ) if __name__ == "__main__": demo.launch()