Spaces:
Runtime error
Runtime error
| from multiprocessing import cpu_count | |
| import threading, pdb, librosa | |
| from time import sleep | |
| from subprocess import Popen | |
| from time import sleep | |
| import torch, os, traceback, sys, warnings, shutil, numpy as np | |
| import faiss | |
| from random import shuffle | |
| now_dir = os.getcwd() | |
| sys.path.append(now_dir) | |
| tmp = os.path.join(now_dir, "TEMP") | |
| shutil.rmtree(tmp, ignore_errors=True) | |
| os.makedirs(tmp, exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) | |
| os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) | |
| os.environ["TEMP"] = tmp | |
| warnings.filterwarnings("ignore") | |
| torch.manual_seed(114514) | |
| from i18n import I18nAuto | |
| import ffmpeg | |
| i18n = I18nAuto() | |
| # 判断是否有能用来训练和加速推理的N卡 | |
| ncpu = cpu_count() | |
| ngpu = torch.cuda.device_count() | |
| gpu_infos = [] | |
| mem = [] | |
| if (not torch.cuda.is_available()) or ngpu == 0: | |
| if_gpu_ok = False | |
| else: | |
| if_gpu_ok = False | |
| for i in range(ngpu): | |
| gpu_name = torch.cuda.get_device_name(i) | |
| if ( | |
| "10" in gpu_name | |
| or "16" in gpu_name | |
| or "20" in gpu_name | |
| or "30" in gpu_name | |
| or "40" in gpu_name | |
| or "A2" in gpu_name.upper() | |
| or "A3" in gpu_name.upper() | |
| or "A4" in gpu_name.upper() | |
| or "P4" in gpu_name.upper() | |
| or "A50" in gpu_name.upper() | |
| or "70" in gpu_name | |
| or "80" in gpu_name | |
| or "90" in gpu_name | |
| or "M4" in gpu_name.upper() | |
| or "T4" in gpu_name.upper() | |
| or "TITAN" in gpu_name.upper() | |
| ): # A10#A100#V100#A40#P40#M40#K80#A4500 | |
| if_gpu_ok = True # 至少有一张能用的N卡 | |
| gpu_infos.append("%s\t%s" % (i, gpu_name)) | |
| mem.append( | |
| int( | |
| torch.cuda.get_device_properties(i).total_memory | |
| / 1024 | |
| / 1024 | |
| / 1024 | |
| + 0.4 | |
| ) | |
| ) | |
| if if_gpu_ok == True and len(gpu_infos) > 0: | |
| gpu_info = "\n".join(gpu_infos) | |
| default_batch_size = min(mem) // 2 | |
| else: | |
| gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") | |
| default_batch_size = 1 | |
| gpus = "-".join([i[0] for i in gpu_infos]) | |
| from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono | |
| from scipy.io import wavfile | |
| from fairseq import checkpoint_utils | |
| import gradio as gr | |
| import logging | |
| from vc_infer_pipeline import VC | |
| from config import Config | |
| from infer_uvr5 import _audio_pre_ | |
| from my_utils import load_audio | |
| from train.process_ckpt import show_info, change_info, merge, extract_small_model | |
| config = Config() | |
| # from trainset_preprocess_pipeline import PreProcess | |
| logging.getLogger("numba").setLevel(logging.WARNING) | |
| class ToolButton(gr.Button, gr.components.FormComponent): | |
| """Small button with single emoji as text, fits inside gradio forms""" | |
| def __init__(self, **kwargs): | |
| super().__init__(variant="tool", **kwargs) | |
| def get_block_name(self): | |
| return "button" | |
| hubert_model = None | |
| def load_hubert(): | |
| global hubert_model | |
| models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
| ["hubert_base.pt"], | |
| suffix="", | |
| ) | |
| hubert_model = models[0] | |
| hubert_model = hubert_model.to(config.device) | |
| if config.is_half: | |
| hubert_model = hubert_model.half() | |
| else: | |
| hubert_model = hubert_model.float() | |
| hubert_model.eval() | |
| weight_root = "weights" | |
| weight_uvr5_root = "uvr5_weights" | |
| names = [] | |
| for name in os.listdir(weight_root): | |
| if name.endswith(".pth"): | |
| names.append(name) | |
| uvr5_names = [] | |
| for name in os.listdir(weight_uvr5_root): | |
| if name.endswith(".pth"): | |
| uvr5_names.append(name.replace(".pth", "")) | |
| def vc_single( | |
| sid, | |
| input_audio, | |
| f0_up_key, | |
| f0_file, | |
| f0_method, | |
| file_index, | |
| # file_big_npy, | |
| index_rate, | |
| ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 | |
| global tgt_sr, net_g, vc, hubert_model | |
| if input_audio is None: | |
| return "You need to upload an audio", None | |
| f0_up_key = int(f0_up_key) | |
| try: | |
| audio = load_audio(input_audio, 16000) | |
| times = [0, 0, 0] | |
| if hubert_model == None: | |
| load_hubert() | |
| if_f0 = cpt.get("f0", 1) | |
| file_index = ( | |
| file_index.strip(" ") | |
| .strip('"') | |
| .strip("\n") | |
| .strip('"') | |
| .strip(" ") | |
| .replace("trained", "added") | |
| ) # 防止小白写错,自动帮他替换掉 | |
| # file_big_npy = ( | |
| # file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
| # ) | |
| audio_opt = vc.pipeline( | |
| hubert_model, | |
| net_g, | |
| sid, | |
| audio, | |
| times, | |
| f0_up_key, | |
| f0_method, | |
| file_index, | |
| # file_big_npy, | |
| index_rate, | |
| if_f0, | |
| f0_file=f0_file, | |
| ) | |
| print( | |
| "npy: ", times[0], "s, f0: ", times[1], "s, infer: ", times[2], "s", sep="" | |
| ) | |
| return "Success", (tgt_sr, audio_opt) | |
| except: | |
| info = traceback.format_exc() | |
| print(info) | |
| return info, (None, None) | |
| def vc_multi( | |
| sid, | |
| dir_path, | |
| opt_root, | |
| paths, | |
| f0_up_key, | |
| f0_method, | |
| file_index, | |
| # file_big_npy, | |
| index_rate, | |
| ): | |
| try: | |
| dir_path = ( | |
| dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
| ) # 防止小白拷路径头尾带了空格和"和回车 | |
| opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
| os.makedirs(opt_root, exist_ok=True) | |
| try: | |
| if dir_path != "": | |
| paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] | |
| else: | |
| paths = [path.name for path in paths] | |
| except: | |
| traceback.print_exc() | |
| paths = [path.name for path in paths] | |
| infos = [] | |
| file_index = ( | |
| file_index.strip(" ") | |
| .strip('"') | |
| .strip("\n") | |
| .strip('"') | |
| .strip(" ") | |
| .replace("trained", "added") | |
| ) # 防止小白写错,自动帮他替换掉 | |
| for path in paths: | |
| info, opt = vc_single( | |
| sid, | |
| path, | |
| f0_up_key, | |
| None, | |
| f0_method, | |
| file_index, | |
| # file_big_npy, | |
| index_rate, | |
| ) | |
| if info == "Success": | |
| try: | |
| tgt_sr, audio_opt = opt | |
| wavfile.write( | |
| "%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt | |
| ) | |
| except: | |
| info = traceback.format_exc() | |
| infos.append("%s->%s" % (os.path.basename(path), info)) | |
| yield "\n".join(infos) | |
| yield "\n".join(infos) | |
| except: | |
| yield traceback.format_exc() | |
| def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg): | |
| infos = [] | |
| try: | |
| inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
| save_root_vocal = ( | |
| save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
| ) | |
| save_root_ins = ( | |
| save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
| ) | |
| pre_fun = _audio_pre_( | |
| agg=int(agg), | |
| model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), | |
| device=config.device, | |
| is_half=config.is_half, | |
| ) | |
| if inp_root != "": | |
| paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] | |
| else: | |
| paths = [path.name for path in paths] | |
| for path in paths: | |
| inp_path = os.path.join(inp_root, path) | |
| need_reformat = 1 | |
| done = 0 | |
| try: | |
| info = ffmpeg.probe(inp_path, cmd="ffprobe") | |
| if ( | |
| info["streams"][0]["channels"] == 2 | |
| and info["streams"][0]["sample_rate"] == "44100" | |
| ): | |
| need_reformat = 0 | |
| pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal) | |
| done = 1 | |
| except: | |
| need_reformat = 1 | |
| traceback.print_exc() | |
| if need_reformat == 1: | |
| tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path)) | |
| os.system( | |
| "ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" | |
| % (inp_path, tmp_path) | |
| ) | |
| inp_path = tmp_path | |
| try: | |
| if done == 0: | |
| pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal) | |
| infos.append("%s->Success" % (os.path.basename(inp_path))) | |
| yield "\n".join(infos) | |
| except: | |
| infos.append( | |
| "%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) | |
| ) | |
| yield "\n".join(infos) | |
| except: | |
| infos.append(traceback.format_exc()) | |
| yield "\n".join(infos) | |
| finally: | |
| try: | |
| del pre_fun.model | |
| del pre_fun | |
| except: | |
| traceback.print_exc() | |
| print("clean_empty_cache") | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| yield "\n".join(infos) | |
| # 一个选项卡全局只能有一个音色 | |
| def get_vc(sid): | |
| global n_spk, tgt_sr, net_g, vc, cpt | |
| if sid == []: | |
| global hubert_model | |
| if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 | |
| print("clean_empty_cache") | |
| del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt | |
| hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| ###楼下不这么折腾清理不干净 | |
| if_f0 = cpt.get("f0", 1) | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid( | |
| *cpt["config"], is_half=config.is_half | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| del net_g, cpt | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| cpt = None | |
| return {"visible": False, "__type__": "update"} | |
| person = "%s/%s" % (weight_root, sid) | |
| print("loading %s" % person) | |
| cpt = torch.load(person, map_location="cpu") | |
| tgt_sr = cpt["config"][-1] | |
| cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
| if_f0 = cpt.get("f0", 1) | |
| if if_f0 == 1: | |
| net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
| del net_g.enc_q | |
| print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩 | |
| net_g.eval().to(config.device) | |
| if config.is_half: | |
| net_g = net_g.half() | |
| else: | |
| net_g = net_g.float() | |
| vc = VC(tgt_sr, config) | |
| n_spk = cpt["config"][-3] | |
| return {"visible": True, "maximum": n_spk, "__type__": "update"} | |
| def change_choices(): | |
| names = [] | |
| for name in os.listdir(weight_root): | |
| if name.endswith(".pth"): | |
| names.append(name) | |
| return {"choices": sorted(names), "__type__": "update"} | |
| def clean(): | |
| return {"value": "", "__type__": "update"} | |
| def change_f0(if_f0_3, sr2): # np7, f0method8,pretrained_G14,pretrained_D15 | |
| if if_f0_3 == i18n("是"): | |
| return ( | |
| {"visible": True, "__type__": "update"}, | |
| {"visible": True, "__type__": "update"}, | |
| "pretrained/f0G%s.pth" % sr2, | |
| "pretrained/f0D%s.pth" % sr2, | |
| ) | |
| return ( | |
| {"visible": False, "__type__": "update"}, | |
| {"visible": False, "__type__": "update"}, | |
| "pretrained/G%s.pth" % sr2, | |
| "pretrained/D%s.pth" % sr2, | |
| ) | |
| sr_dict = { | |
| "32k": 32000, | |
| "40k": 40000, | |
| "48k": 48000, | |
| } | |
| def if_done(done, p): | |
| while 1: | |
| if p.poll() == None: | |
| sleep(0.5) | |
| else: | |
| break | |
| done[0] = True | |
| def if_done_multi(done, ps): | |
| while 1: | |
| # poll==None代表进程未结束 | |
| # 只要有一个进程未结束都不停 | |
| flag = 1 | |
| for p in ps: | |
| if p.poll() == None: | |
| flag = 0 | |
| sleep(0.5) | |
| break | |
| if flag == 1: | |
| break | |
| done[0] = True | |
| def preprocess_dataset(trainset_dir, exp_dir, sr, n_p=ncpu): | |
| sr = sr_dict[sr] | |
| os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
| f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") | |
| f.close() | |
| cmd = ( | |
| config.python_cmd | |
| + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " | |
| % (trainset_dir, sr, n_p, now_dir, exp_dir) | |
| + str(config.noparallel) | |
| ) | |
| print(cmd) | |
| p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir | |
| ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
| done = [False] | |
| threading.Thread( | |
| target=if_done, | |
| args=( | |
| done, | |
| p, | |
| ), | |
| ).start() | |
| while 1: | |
| with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
| yield (f.read()) | |
| sleep(1) | |
| if done[0] == True: | |
| break | |
| with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
| log = f.read() | |
| print(log) | |
| yield log | |
| # but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2]) | |
| def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir): | |
| gpus = gpus.split("-") | |
| os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
| f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") | |
| f.close() | |
| if if_f0 == i18n("是"): | |
| cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % ( | |
| now_dir, | |
| exp_dir, | |
| n_p, | |
| f0method, | |
| ) | |
| print(cmd) | |
| p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE | |
| ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
| done = [False] | |
| threading.Thread( | |
| target=if_done, | |
| args=( | |
| done, | |
| p, | |
| ), | |
| ).start() | |
| while 1: | |
| with open( | |
| "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" | |
| ) as f: | |
| yield (f.read()) | |
| sleep(1) | |
| if done[0] == True: | |
| break | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
| log = f.read() | |
| print(log) | |
| yield log | |
| ####对不同part分别开多进程 | |
| """ | |
| n_part=int(sys.argv[1]) | |
| i_part=int(sys.argv[2]) | |
| i_gpu=sys.argv[3] | |
| exp_dir=sys.argv[4] | |
| os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) | |
| """ | |
| leng = len(gpus) | |
| ps = [] | |
| for idx, n_g in enumerate(gpus): | |
| cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % ( | |
| config.device, | |
| leng, | |
| idx, | |
| n_g, | |
| now_dir, | |
| exp_dir, | |
| ) | |
| print(cmd) | |
| p = Popen( | |
| cmd, shell=True, cwd=now_dir | |
| ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
| ps.append(p) | |
| ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
| done = [False] | |
| threading.Thread( | |
| target=if_done_multi, | |
| args=( | |
| done, | |
| ps, | |
| ), | |
| ).start() | |
| while 1: | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
| yield (f.read()) | |
| sleep(1) | |
| if done[0] == True: | |
| break | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
| log = f.read() | |
| print(log) | |
| yield log | |
| def change_sr2(sr2, if_f0_3): | |
| if if_f0_3 == i18n("是"): | |
| return "pretrained/f0G%s.pth" % sr2, "pretrained/f0D%s.pth" % sr2 | |
| else: | |
| return "pretrained/G%s.pth" % sr2, "pretrained/D%s.pth" % sr2 | |
| # but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16]) | |
| def click_train( | |
| exp_dir1, | |
| sr2, | |
| if_f0_3, | |
| spk_id5, | |
| save_epoch10, | |
| total_epoch11, | |
| batch_size12, | |
| if_save_latest13, | |
| pretrained_G14, | |
| pretrained_D15, | |
| gpus16, | |
| if_cache_gpu17, | |
| ): | |
| # 生成filelist | |
| exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
| os.makedirs(exp_dir, exist_ok=True) | |
| gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) | |
| co256_dir = "%s/3_feature256" % (exp_dir) | |
| if if_f0_3 == i18n("是"): | |
| f0_dir = "%s/2a_f0" % (exp_dir) | |
| f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) | |
| names = ( | |
| set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(co256_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(f0_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | |
| ) | |
| else: | |
| names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | |
| [name.split(".")[0] for name in os.listdir(co256_dir)] | |
| ) | |
| opt = [] | |
| for name in names: | |
| if if_f0_3 == i18n("是"): | |
| opt.append( | |
| "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | |
| % ( | |
| gt_wavs_dir.replace("\\", "\\\\"), | |
| name, | |
| co256_dir.replace("\\", "\\\\"), | |
| name, | |
| f0_dir.replace("\\", "\\\\"), | |
| name, | |
| f0nsf_dir.replace("\\", "\\\\"), | |
| name, | |
| spk_id5, | |
| ) | |
| ) | |
| else: | |
| opt.append( | |
| "%s/%s.wav|%s/%s.npy|%s" | |
| % ( | |
| gt_wavs_dir.replace("\\", "\\\\"), | |
| name, | |
| co256_dir.replace("\\", "\\\\"), | |
| name, | |
| spk_id5, | |
| ) | |
| ) | |
| if if_f0_3 == i18n("是"): | |
| for _ in range(2): | |
| opt.append( | |
| "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | |
| % (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5) | |
| ) | |
| else: | |
| for _ in range(2): | |
| opt.append( | |
| "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s" | |
| % (now_dir, sr2, now_dir, spk_id5) | |
| ) | |
| shuffle(opt) | |
| with open("%s/filelist.txt" % exp_dir, "w") as f: | |
| f.write("\n".join(opt)) | |
| print("write filelist done") | |
| # 生成config#无需生成config | |
| # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" | |
| print("use gpus:", gpus16) | |
| if gpus16: | |
| cmd = ( | |
| config.python_cmd | |
| + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" | |
| % ( | |
| exp_dir1, | |
| sr2, | |
| 1 if if_f0_3 == i18n("是") else 0, | |
| batch_size12, | |
| gpus16, | |
| total_epoch11, | |
| save_epoch10, | |
| pretrained_G14, | |
| pretrained_D15, | |
| 1 if if_save_latest13 == i18n("是") else 0, | |
| 1 if if_cache_gpu17 == i18n("是") else 0, | |
| ) | |
| ) | |
| else: | |
| cmd = ( | |
| config.python_cmd | |
| + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s" | |
| % ( | |
| exp_dir1, | |
| sr2, | |
| 1 if if_f0_3 == i18n("是") else 0, | |
| batch_size12, | |
| total_epoch11, | |
| save_epoch10, | |
| pretrained_G14, | |
| pretrained_D15, | |
| 1 if if_save_latest13 == i18n("是") else 0, | |
| 1 if if_cache_gpu17 == i18n("是") else 0, | |
| ) | |
| ) | |
| print(cmd) | |
| p = Popen(cmd, shell=True, cwd=now_dir) | |
| p.wait() | |
| return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" | |
| # but4.click(train_index, [exp_dir1], info3) | |
| def train_index(exp_dir1): | |
| exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
| os.makedirs(exp_dir, exist_ok=True) | |
| feature_dir = "%s/3_feature256" % (exp_dir) | |
| if os.path.exists(feature_dir) == False: | |
| return "请先进行特征提取!" | |
| listdir_res = list(os.listdir(feature_dir)) | |
| if len(listdir_res) == 0: | |
| return "请先进行特征提取!" | |
| npys = [] | |
| for name in sorted(listdir_res): | |
| phone = np.load("%s/%s" % (feature_dir, name)) | |
| npys.append(phone) | |
| big_npy = np.concatenate(npys, 0) | |
| big_npy_idx = np.arange(big_npy.shape[0]) | |
| np.random.shuffle(big_npy_idx) | |
| big_npy = big_npy[big_npy_idx] | |
| np.save("%s/total_fea.npy" % exp_dir, big_npy) | |
| # n_ivf = big_npy.shape[0] // 39 | |
| n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
| infos = [] | |
| infos.append("%s,%s" % (big_npy.shape, n_ivf)) | |
| yield "\n".join(infos) | |
| index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf) | |
| # index = faiss.index_factory(256, "IVF%s,PQ128x4fs,RFlat"%n_ivf) | |
| infos.append("training") | |
| yield "\n".join(infos) | |
| index_ivf = faiss.extract_index_ivf(index) # | |
| # index_ivf.nprobe = int(np.power(n_ivf,0.3)) | |
| index_ivf.nprobe = 1 | |
| index.train(big_npy) | |
| faiss.write_index( | |
| index, | |
| "%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), | |
| ) | |
| # faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan.index'%(exp_dir,n_ivf)) | |
| infos.append("adding") | |
| yield "\n".join(infos) | |
| batch_size_add = 8192 | |
| for i in range(0, big_npy.shape[0], batch_size_add): | |
| index.add(big_npy[i : i + batch_size_add]) | |
| faiss.write_index( | |
| index, | |
| "%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), | |
| ) | |
| infos.append("成功构建索引,added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe)) | |
| # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan.index'%(exp_dir,n_ivf)) | |
| # infos.append("成功构建索引,added_IVF%s_Flat_FastScan.index"%(n_ivf)) | |
| yield "\n".join(infos) | |
| # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) | |
| def train1key( | |
| exp_dir1, | |
| sr2, | |
| if_f0_3, | |
| trainset_dir4, | |
| spk_id5, | |
| gpus6, | |
| np7, | |
| f0method8, | |
| save_epoch10, | |
| total_epoch11, | |
| batch_size12, | |
| if_save_latest13, | |
| pretrained_G14, | |
| pretrained_D15, | |
| gpus16, | |
| if_cache_gpu17, | |
| ): | |
| infos = [] | |
| def get_info_str(strr): | |
| infos.append(strr) | |
| return "\n".join(infos) | |
| os.makedirs("%s/logs/%s" % (now_dir, exp_dir1), exist_ok=True) | |
| #########step1:处理数据 | |
| open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "w").close() | |
| cmd = ( | |
| config.python_cmd | |
| + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " | |
| % (trainset_dir4, sr_dict[sr2], ncpu, now_dir, exp_dir1) | |
| + str(config.noparallel) | |
| ) | |
| yield get_info_str(i18n("step1:正在处理数据")) | |
| yield get_info_str(cmd) | |
| p = Popen(cmd, shell=True) | |
| p.wait() | |
| with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "r") as f: | |
| print(f.read()) | |
| #########step2a:提取音高 | |
| open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "w") | |
| if if_f0_3 == i18n("是"): | |
| yield get_info_str("step2a:正在提取音高") | |
| cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % ( | |
| now_dir, | |
| exp_dir1, | |
| np7, | |
| f0method8, | |
| ) | |
| yield get_info_str(cmd) | |
| p = Popen(cmd, shell=True, cwd=now_dir) | |
| p.wait() | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f: | |
| print(f.read()) | |
| else: | |
| yield get_info_str(i18n("step2a:无需提取音高")) | |
| #######step2b:提取特征 | |
| yield get_info_str(i18n("step2b:正在提取特征")) | |
| gpus = gpus16.split("-") | |
| leng = len(gpus) | |
| ps = [] | |
| for idx, n_g in enumerate(gpus): | |
| cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % ( | |
| config.device, | |
| leng, | |
| idx, | |
| n_g, | |
| now_dir, | |
| exp_dir1, | |
| ) | |
| yield get_info_str(cmd) | |
| p = Popen( | |
| cmd, shell=True, cwd=now_dir | |
| ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
| ps.append(p) | |
| for p in ps: | |
| p.wait() | |
| with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f: | |
| print(f.read()) | |
| #######step3a:训练模型 | |
| yield get_info_str(i18n("step3a:正在训练模型")) | |
| # 生成filelist | |
| exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
| gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) | |
| co256_dir = "%s/3_feature256" % (exp_dir) | |
| if if_f0_3 == i18n("是"): | |
| f0_dir = "%s/2a_f0" % (exp_dir) | |
| f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) | |
| names = ( | |
| set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(co256_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(f0_dir)]) | |
| & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | |
| ) | |
| else: | |
| names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | |
| [name.split(".")[0] for name in os.listdir(co256_dir)] | |
| ) | |
| opt = [] | |
| for name in names: | |
| if if_f0_3 == i18n("是"): | |
| opt.append( | |
| "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | |
| % ( | |
| gt_wavs_dir.replace("\\", "\\\\"), | |
| name, | |
| co256_dir.replace("\\", "\\\\"), | |
| name, | |
| f0_dir.replace("\\", "\\\\"), | |
| name, | |
| f0nsf_dir.replace("\\", "\\\\"), | |
| name, | |
| spk_id5, | |
| ) | |
| ) | |
| else: | |
| opt.append( | |
| "%s/%s.wav|%s/%s.npy|%s" | |
| % ( | |
| gt_wavs_dir.replace("\\", "\\\\"), | |
| name, | |
| co256_dir.replace("\\", "\\\\"), | |
| name, | |
| spk_id5, | |
| ) | |
| ) | |
| if if_f0_3 == i18n("是"): | |
| for _ in range(2): | |
| opt.append( | |
| "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | |
| % (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5) | |
| ) | |
| else: | |
| for _ in range(2): | |
| opt.append( | |
| "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s" | |
| % (now_dir, sr2, now_dir, spk_id5) | |
| ) | |
| shuffle(opt) | |
| with open("%s/filelist.txt" % exp_dir, "w") as f: | |
| f.write("\n".join(opt)) | |
| yield get_info_str("write filelist done") | |
| if gpus16: | |
| cmd = ( | |
| config.python_cmd | |
| + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" | |
| % ( | |
| exp_dir1, | |
| sr2, | |
| 1 if if_f0_3 == i18n("是") else 0, | |
| batch_size12, | |
| gpus16, | |
| total_epoch11, | |
| save_epoch10, | |
| pretrained_G14, | |
| pretrained_D15, | |
| 1 if if_save_latest13 == i18n("是") else 0, | |
| 1 if if_cache_gpu17 == i18n("是") else 0, | |
| ) | |
| ) | |
| else: | |
| cmd = ( | |
| config.python_cmd | |
| + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s" | |
| % ( | |
| exp_dir1, | |
| sr2, | |
| 1 if if_f0_3 == i18n("是") else 0, | |
| batch_size12, | |
| total_epoch11, | |
| save_epoch10, | |
| pretrained_G14, | |
| pretrained_D15, | |
| 1 if if_save_latest13 == i18n("是") else 0, | |
| 1 if if_cache_gpu17 == i18n("是") else 0, | |
| ) | |
| ) | |
| yield get_info_str(cmd) | |
| p = Popen(cmd, shell=True, cwd=now_dir) | |
| p.wait() | |
| yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")) | |
| #######step3b:训练索引 | |
| feature_dir = "%s/3_feature256" % (exp_dir) | |
| npys = [] | |
| listdir_res = list(os.listdir(feature_dir)) | |
| for name in sorted(listdir_res): | |
| phone = np.load("%s/%s" % (feature_dir, name)) | |
| npys.append(phone) | |
| big_npy = np.concatenate(npys, 0) | |
| big_npy_idx = np.arange(big_npy.shape[0]) | |
| np.random.shuffle(big_npy_idx) | |
| big_npy = big_npy[big_npy_idx] | |
| np.save("%s/total_fea.npy" % exp_dir, big_npy) | |
| # n_ivf = big_npy.shape[0] // 39 | |
| n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
| yield get_info_str("%s,%s" % (big_npy.shape, n_ivf)) | |
| index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf) | |
| yield get_info_str("training index") | |
| index_ivf = faiss.extract_index_ivf(index) # | |
| # index_ivf.nprobe = int(np.power(n_ivf,0.3)) | |
| index_ivf.nprobe = 1 | |
| index.train(big_npy) | |
| faiss.write_index( | |
| index, | |
| "%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), | |
| ) | |
| yield get_info_str("adding index") | |
| batch_size_add = 8192 | |
| for i in range(0, big_npy.shape[0], batch_size_add): | |
| index.add(big_npy[i : i + batch_size_add]) | |
| faiss.write_index( | |
| index, | |
| "%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), | |
| ) | |
| yield get_info_str( | |
| "成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe) | |
| ) | |
| yield get_info_str(i18n("全流程结束!")) | |
| # ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__]) | |
| def change_info_(ckpt_path): | |
| if ( | |
| os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")) | |
| == False | |
| ): | |
| return {"__type__": "update"}, {"__type__": "update"} | |
| try: | |
| with open( | |
| ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" | |
| ) as f: | |
| info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) | |
| sr, f0 = info["sample_rate"], info["if_f0"] | |
| return sr, str(f0) | |
| except: | |
| traceback.print_exc() | |
| return {"__type__": "update"}, {"__type__": "update"} | |
| from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM | |
| from infer_pack.models_onnx import SynthesizerTrnMs256NSFsidO | |
| def export_onnx(ModelPath, ExportedPath, MoeVS=True): | |
| hidden_channels = 256 # hidden_channels,为768Vec做准备 | |
| cpt = torch.load(ModelPath, map_location="cpu") | |
| cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
| print(*cpt["config"]) | |
| test_phone = torch.rand(1, 200, hidden_channels) # hidden unit | |
| test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用) | |
| test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹) | |
| test_pitchf = torch.rand(1, 200) # nsf基频 | |
| test_ds = torch.LongTensor([0]) # 说话人ID | |
| test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子) | |
| device = "cpu" # 导出时设备(不影响使用模型) | |
| if MoeVS: | |
| net_g = SynthesizerTrnMs256NSFsidM( | |
| *cpt["config"], is_half=False | |
| ) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) | |
| net_g.load_state_dict(cpt["weight"], strict=False) | |
| input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] | |
| output_names = [ | |
| "audio", | |
| ] | |
| torch.onnx.export( | |
| net_g, | |
| ( | |
| test_phone.to(device), | |
| test_phone_lengths.to(device), | |
| test_pitch.to(device), | |
| test_pitchf.to(device), | |
| test_ds.to(device), | |
| test_rnd.to(device), | |
| ), | |
| ExportedPath, | |
| dynamic_axes={ | |
| "phone": [1], | |
| "pitch": [1], | |
| "pitchf": [1], | |
| "rnd": [2], | |
| }, | |
| do_constant_folding=False, | |
| opset_version=16, | |
| verbose=False, | |
| input_names=input_names, | |
| output_names=output_names, | |
| ) | |
| else: | |
| net_g = SynthesizerTrnMs256NSFsidO( | |
| *cpt["config"], is_half=False | |
| ) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) | |
| net_g.load_state_dict(cpt["weight"], strict=False) | |
| input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds"] | |
| output_names = [ | |
| "audio", | |
| ] | |
| torch.onnx.export( | |
| net_g, | |
| ( | |
| test_phone.to(device), | |
| test_phone_lengths.to(device), | |
| test_pitch.to(device), | |
| test_pitchf.to(device), | |
| test_ds.to(device), | |
| ), | |
| ExportedPath, | |
| dynamic_axes={ | |
| "phone": [1], | |
| "pitch": [1], | |
| "pitchf": [1], | |
| }, | |
| do_constant_folding=False, | |
| opset_version=16, | |
| verbose=False, | |
| input_names=input_names, | |
| output_names=output_names, | |
| ) | |
| return "Finished" | |
| with gr.Blocks() as app: | |
| gr.Markdown( | |
| value=i18n( | |
| "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>." | |
| ) | |
| ) | |
| with gr.Tabs(): | |
| with gr.TabItem(i18n("模型推理")): | |
| with gr.Row(): | |
| sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names)) | |
| refresh_button = gr.Button(i18n("刷新音色列表"), variant="primary") | |
| refresh_button.click(fn=change_choices, inputs=[], outputs=[sid0]) | |
| clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") | |
| spk_item = gr.Slider( | |
| minimum=0, | |
| maximum=2333, | |
| step=1, | |
| label=i18n("请选择说话人id"), | |
| value=0, | |
| visible=False, | |
| interactive=True, | |
| ) | |
| clean_button.click(fn=clean, inputs=[], outputs=[sid0]) | |
| sid0.change( | |
| fn=get_vc, | |
| inputs=[sid0], | |
| outputs=[spk_item], | |
| ) | |
| with gr.Group(): | |
| gr.Markdown( | |
| value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ") | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| vc_transform0 = gr.Number( | |
| label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | |
| ) | |
| input_audio0 = gr.Textbox( | |
| label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), | |
| value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs\\冬之花clip1.wav", | |
| ) | |
| f0method0 = gr.Radio( | |
| label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"), | |
| choices=["pm", "harvest"], | |
| value="pm", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| file_index1 = gr.Textbox( | |
| label=i18n("特征检索库文件路径"), | |
| value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", | |
| interactive=True, | |
| ) | |
| # file_big_npy1 = gr.Textbox( | |
| # label=i18n("特征文件路径"), | |
| # value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", | |
| # interactive=True, | |
| # ) | |
| index_rate1 = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| label=i18n("检索特征占比"), | |
| value=0.76, | |
| interactive=True, | |
| ) | |
| f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调")) | |
| but0 = gr.Button(i18n("转换"), variant="primary") | |
| with gr.Column(): | |
| vc_output1 = gr.Textbox(label=i18n("输出信息")) | |
| vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)")) | |
| but0.click( | |
| vc_single, | |
| [ | |
| spk_item, | |
| input_audio0, | |
| vc_transform0, | |
| f0_file, | |
| f0method0, | |
| file_index1, | |
| # file_big_npy1, | |
| index_rate1, | |
| ], | |
| [vc_output1, vc_output2], | |
| ) | |
| with gr.Group(): | |
| gr.Markdown( | |
| value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ") | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| vc_transform1 = gr.Number( | |
| label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | |
| ) | |
| opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt") | |
| f0method1 = gr.Radio( | |
| label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"), | |
| choices=["pm", "harvest"], | |
| value="pm", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| file_index2 = gr.Textbox( | |
| label=i18n("特征检索库文件路径"), | |
| value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", | |
| interactive=True, | |
| ) | |
| # file_big_npy2 = gr.Textbox( | |
| # label=i18n("特征文件路径"), | |
| # value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", | |
| # interactive=True, | |
| # ) | |
| index_rate2 = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| label=i18n("检索特征占比"), | |
| value=1, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| dir_input = gr.Textbox( | |
| label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), | |
| value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs", | |
| ) | |
| inputs = gr.File( | |
| file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | |
| ) | |
| but1 = gr.Button(i18n("转换"), variant="primary") | |
| vc_output3 = gr.Textbox(label=i18n("输出信息")) | |
| but1.click( | |
| vc_multi, | |
| [ | |
| spk_item, | |
| dir_input, | |
| opt_input, | |
| inputs, | |
| vc_transform1, | |
| f0method1, | |
| file_index2, | |
| # file_big_npy2, | |
| index_rate2, | |
| ], | |
| [vc_output3], | |
| ) | |
| with gr.TabItem(i18n("伴奏人声分离")): | |
| with gr.Group(): | |
| gr.Markdown( | |
| value=i18n( | |
| "人声伴奏分离批量处理, 使用UVR5模型. <br>不带和声用HP2, 带和声且提取的人声不需要和声用HP5<br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)" | |
| ) | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| dir_wav_input = gr.Textbox( | |
| label=i18n("输入待处理音频文件夹路径"), | |
| value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs", | |
| ) | |
| wav_inputs = gr.File( | |
| file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | |
| ) | |
| with gr.Column(): | |
| model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) | |
| agg = gr.Slider( | |
| minimum=0, | |
| maximum=20, | |
| step=1, | |
| label="人声提取激进程度", | |
| value=10, | |
| interactive=True, | |
| visible=False, # 先不开放调整 | |
| ) | |
| opt_vocal_root = gr.Textbox( | |
| label=i18n("指定输出人声文件夹"), value="opt" | |
| ) | |
| opt_ins_root = gr.Textbox(label=i18n("指定输出乐器文件夹"), value="opt") | |
| but2 = gr.Button(i18n("转换"), variant="primary") | |
| vc_output4 = gr.Textbox(label=i18n("输出信息")) | |
| but2.click( | |
| uvr, | |
| [ | |
| model_choose, | |
| dir_wav_input, | |
| opt_vocal_root, | |
| wav_inputs, | |
| opt_ins_root, | |
| agg, | |
| ], | |
| [vc_output4], | |
| ) | |
| with gr.TabItem(i18n("训练")): | |
| gr.Markdown( | |
| value=i18n( | |
| "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. " | |
| ) | |
| ) | |
| with gr.Row(): | |
| exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test") | |
| sr2 = gr.Radio( | |
| label=i18n("目标采样率"), | |
| choices=["32k", "40k", "48k"], | |
| value="40k", | |
| interactive=True, | |
| ) | |
| if_f0_3 = gr.Radio( | |
| label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), | |
| choices=[i18n("是"), i18n("否")], | |
| value=i18n("是"), | |
| interactive=True, | |
| ) | |
| with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理 | |
| gr.Markdown( | |
| value=i18n( | |
| "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. " | |
| ) | |
| ) | |
| with gr.Row(): | |
| trainset_dir4 = gr.Textbox( | |
| label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src" | |
| ) | |
| spk_id5 = gr.Slider( | |
| minimum=0, | |
| maximum=4, | |
| step=1, | |
| label=i18n("请指定说话人id"), | |
| value=0, | |
| interactive=True, | |
| ) | |
| but1 = gr.Button(i18n("处理数据"), variant="primary") | |
| info1 = gr.Textbox(label=i18n("输出信息"), value="") | |
| but1.click( | |
| preprocess_dataset, [trainset_dir4, exp_dir1, sr2], [info1] | |
| ) | |
| with gr.Group(): | |
| gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gpus6 = gr.Textbox( | |
| label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), | |
| value=gpus, | |
| interactive=True, | |
| ) | |
| gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) | |
| with gr.Column(): | |
| np7 = gr.Slider( | |
| minimum=0, | |
| maximum=ncpu, | |
| step=1, | |
| label=i18n("提取音高使用的CPU进程数"), | |
| value=ncpu, | |
| interactive=True, | |
| ) | |
| f0method8 = gr.Radio( | |
| label=i18n( | |
| "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" | |
| ), | |
| choices=["pm", "harvest", "dio"], | |
| value="harvest", | |
| interactive=True, | |
| ) | |
| but2 = gr.Button(i18n("特征提取"), variant="primary") | |
| info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
| but2.click( | |
| extract_f0_feature, | |
| [gpus6, np7, f0method8, if_f0_3, exp_dir1], | |
| [info2], | |
| ) | |
| with gr.Group(): | |
| gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引")) | |
| with gr.Row(): | |
| save_epoch10 = gr.Slider( | |
| minimum=0, | |
| maximum=50, | |
| step=1, | |
| label=i18n("保存频率save_every_epoch"), | |
| value=5, | |
| interactive=True, | |
| ) | |
| total_epoch11 = gr.Slider( | |
| minimum=0, | |
| maximum=1000, | |
| step=1, | |
| label=i18n("总训练轮数total_epoch"), | |
| value=20, | |
| interactive=True, | |
| ) | |
| batch_size12 = gr.Slider( | |
| minimum=1, | |
| maximum=40, | |
| step=1, | |
| label=i18n("每张显卡的batch_size"), | |
| value=default_batch_size, | |
| interactive=True, | |
| ) | |
| if_save_latest13 = gr.Radio( | |
| label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), | |
| choices=[i18n("是"), i18n("否")], | |
| value=i18n("否"), | |
| interactive=True, | |
| ) | |
| if_cache_gpu17 = gr.Radio( | |
| label=i18n( | |
| "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" | |
| ), | |
| choices=[i18n("是"), i18n("否")], | |
| value=i18n("否"), | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| pretrained_G14 = gr.Textbox( | |
| label=i18n("加载预训练底模G路径"), | |
| value="pretrained/f0G40k.pth", | |
| interactive=True, | |
| ) | |
| pretrained_D15 = gr.Textbox( | |
| label=i18n("加载预训练底模D路径"), | |
| value="pretrained/f0D40k.pth", | |
| interactive=True, | |
| ) | |
| sr2.change( | |
| change_sr2, [sr2, if_f0_3], [pretrained_G14, pretrained_D15] | |
| ) | |
| if_f0_3.change( | |
| change_f0, | |
| [if_f0_3, sr2], | |
| [np7, f0method8, pretrained_G14, pretrained_D15], | |
| ) | |
| gpus16 = gr.Textbox( | |
| label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), | |
| value=gpus, | |
| interactive=True, | |
| ) | |
| but3 = gr.Button(i18n("训练模型"), variant="primary") | |
| but4 = gr.Button(i18n("训练特征索引"), variant="primary") | |
| but5 = gr.Button(i18n("一键训练"), variant="primary") | |
| info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10) | |
| but3.click( | |
| click_train, | |
| [ | |
| exp_dir1, | |
| sr2, | |
| if_f0_3, | |
| spk_id5, | |
| save_epoch10, | |
| total_epoch11, | |
| batch_size12, | |
| if_save_latest13, | |
| pretrained_G14, | |
| pretrained_D15, | |
| gpus16, | |
| if_cache_gpu17, | |
| ], | |
| info3, | |
| ) | |
| but4.click(train_index, [exp_dir1], info3) | |
| but5.click( | |
| train1key, | |
| [ | |
| exp_dir1, | |
| sr2, | |
| if_f0_3, | |
| trainset_dir4, | |
| spk_id5, | |
| gpus6, | |
| np7, | |
| f0method8, | |
| save_epoch10, | |
| total_epoch11, | |
| batch_size12, | |
| if_save_latest13, | |
| pretrained_G14, | |
| pretrained_D15, | |
| gpus16, | |
| if_cache_gpu17, | |
| ], | |
| info3, | |
| ) | |
| with gr.TabItem(i18n("ckpt处理")): | |
| with gr.Group(): | |
| gr.Markdown(value=i18n("模型融合, 可用于测试音色融合")) | |
| with gr.Row(): | |
| ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True) | |
| ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True) | |
| alpha_a = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| label=i18n("A模型权重"), | |
| value=0.5, | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| sr_ = gr.Radio( | |
| label=i18n("目标采样率"), | |
| choices=["32k", "40k", "48k"], | |
| value="40k", | |
| interactive=True, | |
| ) | |
| if_f0_ = gr.Radio( | |
| label=i18n("模型是否带音高指导"), | |
| choices=[i18n("是"), i18n("否")], | |
| value=i18n("是"), | |
| interactive=True, | |
| ) | |
| info__ = gr.Textbox( | |
| label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True | |
| ) | |
| name_to_save0 = gr.Textbox( | |
| label=i18n("保存的模型名不带后缀"), | |
| value="", | |
| max_lines=1, | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| but6 = gr.Button(i18n("融合"), variant="primary") | |
| info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
| but6.click( | |
| merge, | |
| [ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0], | |
| info4, | |
| ) # def merge(path1,path2,alpha1,sr,f0,info): | |
| with gr.Group(): | |
| gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")) | |
| with gr.Row(): | |
| ckpt_path0 = gr.Textbox( | |
| label=i18n("模型路径"), value="", interactive=True | |
| ) | |
| info_ = gr.Textbox( | |
| label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True | |
| ) | |
| name_to_save1 = gr.Textbox( | |
| label=i18n("保存的文件名, 默认空为和源文件同名"), | |
| value="", | |
| max_lines=8, | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| but7 = gr.Button(i18n("修改"), variant="primary") | |
| info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
| but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5) | |
| with gr.Group(): | |
| gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")) | |
| with gr.Row(): | |
| ckpt_path1 = gr.Textbox( | |
| label=i18n("模型路径"), value="", interactive=True | |
| ) | |
| but8 = gr.Button(i18n("查看"), variant="primary") | |
| info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
| but8.click(show_info, [ckpt_path1], info6) | |
| with gr.Group(): | |
| gr.Markdown( | |
| value=i18n( | |
| "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况" | |
| ) | |
| ) | |
| with gr.Row(): | |
| ckpt_path2 = gr.Textbox( | |
| label=i18n("模型路径"), | |
| value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth", | |
| interactive=True, | |
| ) | |
| save_name = gr.Textbox( | |
| label=i18n("保存名"), value="", interactive=True | |
| ) | |
| sr__ = gr.Radio( | |
| label=i18n("目标采样率"), | |
| choices=["32k", "40k", "48k"], | |
| value="40k", | |
| interactive=True, | |
| ) | |
| if_f0__ = gr.Radio( | |
| label=i18n("模型是否带音高指导,1是0否"), | |
| choices=["1", "0"], | |
| value="1", | |
| interactive=True, | |
| ) | |
| info___ = gr.Textbox( | |
| label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True | |
| ) | |
| but9 = gr.Button(i18n("提取"), variant="primary") | |
| info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
| ckpt_path2.change(change_info_, [ckpt_path2], [sr__, if_f0__]) | |
| but9.click( | |
| extract_small_model, | |
| [ckpt_path2, save_name, sr__, if_f0__, info___], | |
| info7, | |
| ) | |
| with gr.TabItem(i18n("Onnx导出")): | |
| with gr.Row(): | |
| ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True) | |
| with gr.Row(): | |
| onnx_dir = gr.Textbox( | |
| label=i18n("Onnx输出路径"), value="", interactive=True | |
| ) | |
| with gr.Row(): | |
| moevs = gr.Checkbox(label=i18n("MoeVS模型"), value=True) | |
| infoOnnx = gr.Label(label="Null") | |
| with gr.Row(): | |
| butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary") | |
| butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx) | |
| # with gr.TabItem(i18n("招募音高曲线前端编辑器")): | |
| # gr.Markdown(value=i18n("加开发群联系我xxxxx")) | |
| # with gr.TabItem(i18n("点击查看交流、问题反馈群号")): | |
| # gr.Markdown(value=i18n("xxxxx")) | |
| # if config.iscolab: | |
| # else: | |
| # app.queue(concurrency_count=511, max_size=1022).launch( | |
| # server_name="0.0.0.0", | |
| # inbrowser=not config.noautoopen, | |
| # server_port=config.listen_port, | |
| # quiet=True, | |
| # ) | |
| app.queue(concurrency_count=511, max_size=1022).launch(debug=True) | |