Spaces:
Runtime error
Runtime error
| import os, sys, torch, warnings, pdb | |
| warnings.filterwarnings("ignore") | |
| import librosa | |
| import importlib | |
| import numpy as np | |
| import hashlib, math | |
| from tqdm import tqdm | |
| from uvr5_pack.lib_v5 import spec_utils | |
| from uvr5_pack.utils import _get_name_params, inference | |
| from uvr5_pack.lib_v5.model_param_init import ModelParameters | |
| from scipy.io import wavfile | |
| class _audio_pre_: | |
| def __init__(self, agg, model_path, device, is_half): | |
| self.model_path = model_path | |
| self.device = device | |
| self.data = { | |
| # Processing Options | |
| "postprocess": False, | |
| "tta": False, | |
| # Constants | |
| "window_size": 512, | |
| "agg": agg, | |
| "high_end_process": "mirroring", | |
| } | |
| nn_arch_sizes = [ | |
| 31191, # default | |
| 33966, | |
| 61968, | |
| 123821, | |
| 123812, | |
| 537238, # custom | |
| ] | |
| self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes) | |
| model_size = math.ceil(os.stat(model_path).st_size / 1024) | |
| nn_architecture = "{}KB".format( | |
| min(nn_arch_sizes, key=lambda x: abs(x - model_size)) | |
| ) | |
| nets = importlib.import_module( | |
| "uvr5_pack.lib_v5.nets" | |
| + f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""), | |
| package=None, | |
| ) | |
| model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
| param_name, model_params_d = _get_name_params(model_path, model_hash) | |
| mp = ModelParameters(model_params_d) | |
| model = nets.CascadedASPPNet(mp.param["bins"] * 2) | |
| cpk = torch.load(model_path, map_location="cpu") | |
| model.load_state_dict(cpk) | |
| model.eval() | |
| if is_half: | |
| model = model.half().to(device) | |
| else: | |
| model = model.to(device) | |
| self.mp = mp | |
| self.model = model | |
| def _path_audio_(self, music_file, ins_root=None, vocal_root=None): | |
| if ins_root is None and vocal_root is None: | |
| return "No save root." | |
| name = os.path.basename(music_file) | |
| if ins_root is not None: | |
| os.makedirs(ins_root, exist_ok=True) | |
| if vocal_root is not None: | |
| os.makedirs(vocal_root, exist_ok=True) | |
| X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {} | |
| bands_n = len(self.mp.param["band"]) | |
| # print(bands_n) | |
| for d in range(bands_n, 0, -1): | |
| bp = self.mp.param["band"][d] | |
| if d == bands_n: # high-end band | |
| ( | |
| X_wave[d], | |
| _, | |
| ) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑 | |
| music_file, | |
| bp["sr"], | |
| False, | |
| dtype=np.float32, | |
| res_type=bp["res_type"], | |
| ) | |
| if X_wave[d].ndim == 1: | |
| X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]]) | |
| else: # lower bands | |
| X_wave[d] = librosa.core.resample( | |
| X_wave[d + 1], | |
| self.mp.param["band"][d + 1]["sr"], | |
| bp["sr"], | |
| res_type=bp["res_type"], | |
| ) | |
| # Stft of wave source | |
| X_spec_s[d] = spec_utils.wave_to_spectrogram_mt( | |
| X_wave[d], | |
| bp["hl"], | |
| bp["n_fft"], | |
| self.mp.param["mid_side"], | |
| self.mp.param["mid_side_b2"], | |
| self.mp.param["reverse"], | |
| ) | |
| # pdb.set_trace() | |
| if d == bands_n and self.data["high_end_process"] != "none": | |
| input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + ( | |
| self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"] | |
| ) | |
| input_high_end = X_spec_s[d][ | |
| :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, : | |
| ] | |
| X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp) | |
| aggresive_set = float(self.data["agg"] / 100) | |
| aggressiveness = { | |
| "value": aggresive_set, | |
| "split_bin": self.mp.param["band"][1]["crop_stop"], | |
| } | |
| with torch.no_grad(): | |
| pred, X_mag, X_phase = inference( | |
| X_spec_m, self.device, self.model, aggressiveness, self.data | |
| ) | |
| # Postprocess | |
| if self.data["postprocess"]: | |
| pred_inv = np.clip(X_mag - pred, 0, np.inf) | |
| pred = spec_utils.mask_silence(pred, pred_inv) | |
| y_spec_m = pred * X_phase | |
| v_spec_m = X_spec_m - y_spec_m | |
| if ins_root is not None: | |
| if self.data["high_end_process"].startswith("mirroring"): | |
| input_high_end_ = spec_utils.mirroring( | |
| self.data["high_end_process"], y_spec_m, input_high_end, self.mp | |
| ) | |
| wav_instrument = spec_utils.cmb_spectrogram_to_wave( | |
| y_spec_m, self.mp, input_high_end_h, input_high_end_ | |
| ) | |
| else: | |
| wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp) | |
| print("%s instruments done" % name) | |
| wavfile.write( | |
| os.path.join( | |
| ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"]) | |
| ), | |
| self.mp.param["sr"], | |
| (np.array(wav_instrument) * 32768).astype("int16"), | |
| ) # | |
| if vocal_root is not None: | |
| if self.data["high_end_process"].startswith("mirroring"): | |
| input_high_end_ = spec_utils.mirroring( | |
| self.data["high_end_process"], v_spec_m, input_high_end, self.mp | |
| ) | |
| wav_vocals = spec_utils.cmb_spectrogram_to_wave( | |
| v_spec_m, self.mp, input_high_end_h, input_high_end_ | |
| ) | |
| else: | |
| wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp) | |
| print("%s vocals done" % name) | |
| wavfile.write( | |
| os.path.join( | |
| vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"]) | |
| ), | |
| self.mp.param["sr"], | |
| (np.array(wav_vocals) * 32768).astype("int16"), | |
| ) | |
| if __name__ == "__main__": | |
| device = "cuda" | |
| is_half = True | |
| model_path = "uvr5_weights/2_HP-UVR.pth" | |
| pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True) | |
| audio_path = "神女劈观.aac" | |
| save_path = "opt" | |
| pre_fun._path_audio_(audio_path, save_path, save_path) | |