Spaces:
Runtime error
Runtime error
| import os, sys, traceback | |
| # device=sys.argv[1] | |
| n_part = int(sys.argv[2]) | |
| i_part = int(sys.argv[3]) | |
| if len(sys.argv) == 5: | |
| exp_dir = sys.argv[4] | |
| else: | |
| i_gpu = sys.argv[4] | |
| exp_dir = sys.argv[5] | |
| os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu) | |
| import torch | |
| import torch.nn.functional as F | |
| import soundfile as sf | |
| import numpy as np | |
| from fairseq import checkpoint_utils | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| f = open("%s/extract_f0_feature.log" % exp_dir, "a+") | |
| def printt(strr): | |
| print(strr) | |
| f.write("%s\n" % strr) | |
| f.flush() | |
| printt(sys.argv) | |
| model_path = "hubert_base.pt" | |
| printt(exp_dir) | |
| wavPath = "%s/1_16k_wavs" % exp_dir | |
| outPath = "%s/3_feature256" % exp_dir | |
| os.makedirs(outPath, exist_ok=True) | |
| # wave must be 16k, hop_size=320 | |
| def readwave(wav_path, normalize=False): | |
| wav, sr = sf.read(wav_path) | |
| assert sr == 16000 | |
| feats = torch.from_numpy(wav).float() | |
| if feats.dim() == 2: # double channels | |
| feats = feats.mean(-1) | |
| assert feats.dim() == 1, feats.dim() | |
| if normalize: | |
| with torch.no_grad(): | |
| feats = F.layer_norm(feats, feats.shape) | |
| feats = feats.view(1, -1) | |
| return feats | |
| # HuBERT model | |
| printt("load model(s) from {}".format(model_path)) | |
| models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
| [model_path], | |
| suffix="", | |
| ) | |
| model = models[0] | |
| model = model.to(device) | |
| printt("move model to %s" % device) | |
| if device != "cpu": | |
| model = model.half() | |
| model.eval() | |
| todo = sorted(list(os.listdir(wavPath)))[i_part::n_part] | |
| n = max(1, len(todo) // 10) # 最多打印十条 | |
| if len(todo) == 0: | |
| printt("no-feature-todo") | |
| else: | |
| printt("all-feature-%s" % len(todo)) | |
| for idx, file in enumerate(todo): | |
| try: | |
| if file.endswith(".wav"): | |
| wav_path = "%s/%s" % (wavPath, file) | |
| out_path = "%s/%s" % (outPath, file.replace("wav", "npy")) | |
| if os.path.exists(out_path): | |
| continue | |
| feats = readwave(wav_path, normalize=saved_cfg.task.normalize) | |
| padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
| inputs = { | |
| "source": feats.half().to(device) | |
| if device != "cpu" | |
| else feats.to(device), | |
| "padding_mask": padding_mask.to(device), | |
| "output_layer": 9, # layer 9 | |
| } | |
| with torch.no_grad(): | |
| logits = model.extract_features(**inputs) | |
| feats = model.final_proj(logits[0]) | |
| feats = feats.squeeze(0).float().cpu().numpy() | |
| if np.isnan(feats).sum() == 0: | |
| np.save(out_path, feats, allow_pickle=False) | |
| else: | |
| printt("%s-contains nan" % file) | |
| if idx % n == 0: | |
| printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape)) | |
| except: | |
| printt(traceback.format_exc()) | |
| printt("all-feature-done") | |