import streamlit as st import os import pathlib import textwrap from PIL import Image import google.generativeai as genai genai.configure(api_key='AIzaSyCeNgXfZx0kJ736XFVtxXxev_RdscB0i5s') ## Function to load OpenAI model and get respones def get_gemini_response(input,image,prompt): model = genai.GenerativeModel('gemini-pro-vision') response = model.generate_content([input,image[0],prompt]) return response.text def input_image_setup(uploaded_file): # Check if a file has been uploaded if uploaded_file is not None: # Read the file into bytes bytes_data = uploaded_file.getvalue() image_parts = [ { "mime_type": uploaded_file.type, # Get the mime type of the uploaded file "data": bytes_data } ] return image_parts else: raise FileNotFoundError("No file uploaded") if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_column_width=True) submit=st.button("Submit") input_prompt =""" You are an expert in understanding business cards. Input: Image of a business card. Task: Extract and label the following information in JSON format: Lagels : person_name, company_name, occupation, contact_number, email addresse, website, address, other_details (services, features, etc.) Constraints: Do not include missing information. """ if submit: image_data = input_image_setup(uploaded_file) if image_data is not None: response = get_gemini_response(input_prompt, image_data, input_text) st.subheader("Output :") st.write(response)