|
import streamlit as st |
|
import os |
|
import pathlib |
|
import textwrap |
|
from PIL import Image |
|
|
|
|
|
import google.generativeai as genai |
|
|
|
genai.configure(api_key='AIzaSyCeNgXfZx0kJ736XFVtxXxev_RdscB0i5s') |
|
|
|
|
|
|
|
def get_gemini_response(input,image,prompt): |
|
model = genai.GenerativeModel('gemini-pro-vision') |
|
response = model.generate_content([input,image[0],prompt]) |
|
return response.text |
|
|
|
|
|
def input_image_setup(uploaded_file): |
|
|
|
if uploaded_file is not None: |
|
|
|
bytes_data = uploaded_file.getvalue() |
|
|
|
image_parts = [ |
|
{ |
|
"mime_type": uploaded_file.type, |
|
"data": bytes_data |
|
} |
|
] |
|
return image_parts |
|
else: |
|
raise FileNotFoundError("No file uploaded") |
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="Gemini Image Demo") |
|
|
|
st.header("Generative AI : Invoice Reader") |
|
input=st.text_input("Input Prompt: ",key="input") |
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) |
|
image="" |
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file) |
|
st.image(image, caption="Uploaded Image.", use_column_width=True) |
|
|
|
|
|
submit=st.button("Tell me about the image") |
|
|
|
input_prompt = """ |
|
You are an expert in understanding business cards. |
|
You will receive input images as business card & you will have to answer questions based on the input image. |
|
You have to extract information from business card images and give correct tag to the output text |
|
like person name, company name, occupation, address, phone/telephone number, email, website, etc. |
|
""" |
|
|
|
|
|
|
|
if submit: |
|
image_data = input_image_setup(uploaded_file) |
|
response=get_gemini_response(input_prompt,image_data,input) |
|
st.subheader("The Response is") |
|
st.write(response) |