import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained(".", local_files_only=True) model = AutoModelForSeq2SeqLM.from_pretrained(".", local_files_only=True) pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer) def predict(task, prompt, context="", auto_cot=False): input_str = f"[TASK: {task.upper()}] {prompt}" if context: input_str += f" Context: {context}" if auto_cot: input_str += "\nLet's think step by step." result = pipe(input_str, max_new_tokens=128)[0]["generated_text"] return result demo = gr.Interface( fn=predict, inputs=["text", "text", "text", "checkbox"], outputs="text" ) demo.launch()