import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline # Load model tokenizer = AutoTokenizer.from_pretrained("./mtpe-model") model = AutoModelForSeq2SeqLM.from_pretrained("./mtpe-model") pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer) def predict(task, prompt, context, auto_cot): input_str = f"[TASK: {task.upper()}] {prompt}" if context: input_str += f" Context: {context}" if auto_cot: input_str += "\nLet's think step by step." output = pipe(input_str, max_new_tokens=128)[0]["generated_text"] return output iface = gr.Interface( fn=predict, inputs=[ gr.Textbox(label="Task", value="qa"), gr.Textbox(label="Prompt"), gr.Textbox(label="Context (optional)", lines=2), gr.Checkbox(label="Enable Auto-CoT") ], outputs="text", title="Prompt Playground Inference API", description="Runs your trained mtpe-model from HF Spaces" ) iface.launch()