{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "81bb23ad", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
querysemantic_similarityrougeL_f1status
0What is the Berry Export Summary 2028 and what...0.87630.3206PASS
1What are some of the benefits reported from ha...0.96550.6016PASS
2What are the unique features of the Coolands f...0.79420.2519PASS
3What is the main difference between the Nation...0.90240.2597PASS
4How did Gunnar Nelson win the fight against Za...0.85100.3101PASS
5What are some of the features of Fabiana Filip...0.90990.2963PASS
6How did Dan Foley feel about his portrayal on ...0.91700.4444PASS
7What is the reason for the closure of the comm...0.82980.3636PASS
8What are the five love and relationship podcas...0.71040.1860FAIL
9Which two teams dropped out of the Primal Ques...0.97010.4258PASS
\n", "
" ], "text/plain": [ " query semantic_similarity \\\n", "0 What is the Berry Export Summary 2028 and what... 0.8763 \n", "1 What are some of the benefits reported from ha... 0.9655 \n", "2 What are the unique features of the Coolands f... 0.7942 \n", "3 What is the main difference between the Nation... 0.9024 \n", "4 How did Gunnar Nelson win the fight against Za... 0.8510 \n", "5 What are some of the features of Fabiana Filip... 0.9099 \n", "6 How did Dan Foley feel about his portrayal on ... 0.9170 \n", "7 What is the reason for the closure of the comm... 0.8298 \n", "8 What are the five love and relationship podcas... 0.7104 \n", "9 Which two teams dropped out of the Primal Ques... 0.9701 \n", "\n", " rougeL_f1 status \n", "0 0.3206 PASS \n", "1 0.6016 PASS \n", "2 0.2519 PASS \n", "3 0.2597 PASS \n", "4 0.3101 PASS \n", "5 0.2963 PASS \n", "6 0.4444 PASS \n", "7 0.3636 PASS \n", "8 0.1860 FAIL \n", "9 0.4258 PASS " ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load scores from CSV\n", "\n", "import pandas as pd\n", "\n", "df = pd.read_csv(\"rag_scores.csv\")\n", "\n", "df.head(10)" ] }, { "cell_type": "code", "execution_count": 2, "id": "58e0482f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
semantic_similarityrougeL_f1
count75.00000075.000000
mean0.8526920.395061
std0.0887590.216511
min0.5915000.098600
25%0.7946000.251600
50%0.8732000.325600
75%0.9181500.495100
max1.0000001.000000
\n", "
" ], "text/plain": [ " semantic_similarity rougeL_f1\n", "count 75.000000 75.000000\n", "mean 0.852692 0.395061\n", "std 0.088759 0.216511\n", "min 0.591500 0.098600\n", "25% 0.794600 0.251600\n", "50% 0.873200 0.325600\n", "75% 0.918150 0.495100\n", "max 1.000000 1.000000" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 3, "id": "a9073d52", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "status\n", "PASS 64\n", "FAIL 11\n", "Name: count, dtype: int64" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['status'].value_counts()" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" } }, "nbformat": 4, "nbformat_minor": 5 }