import os from langchain_community.document_loaders import PyMuPDFLoader import faiss from langchain_groq import ChatGroq from langchain.agents import AgentExecutor, create_tool_calling_agent from langchain_community.tools.tavily_search import TavilySearchResults from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.memory import ConversationBufferMemory from sentence_transformers import SentenceTransformer import dotenv dotenv.load_dotenv() # Initialize LLM and tools globally def model_selection(model_name): llm = ChatGroq(model=model_name, api_key=os.getenv("GROQ_API_KEY")) return llm tools = [TavilySearchResults(max_results=5)] # Initialize memory for conversation history memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def estimate_tokens(text): """Estimate the number of tokens in a text (rough approximation).""" return len(text) // 4 def process_pdf_file(file_path): """Load a PDF file and extract its text.""" if not os.path.exists(file_path): raise FileNotFoundError(f"The file {file_path} does not exist.") loader = PyMuPDFLoader(file_path) documents = loader.load() text = "".join(doc.page_content for doc in documents) return text def chunk_text(text, max_length=1500): """Split text into chunks based on paragraphs, respecting max_length.""" paragraphs = text.split("\n\n") chunks = [] current_chunk = "" for paragraph in paragraphs: if len(current_chunk) + len(paragraph) <= max_length: current_chunk += paragraph + "\n\n" else: chunks.append(current_chunk.strip()) current_chunk = paragraph + "\n\n" if current_chunk: chunks.append(current_chunk.strip()) return chunks def create_embeddings(texts, model): """Create embeddings for a list of texts using the provided model.""" embeddings = model.encode(texts, show_progress_bar=True, convert_to_tensor=True) return embeddings.cpu().numpy() def build_faiss_index(embeddings): """Build a FAISS index from embeddings for similarity search.""" dim = embeddings.shape[1] index = faiss.IndexFlatL2(dim) index.add(embeddings) return index def retrieve_similar_chunks(query, index, texts, model, k=3, max_chunk_length=3500): """Retrieve top k similar chunks to the query from the FAISS index.""" query_embedding = model.encode([query], convert_to_tensor=True).cpu().numpy() distances, indices = index.search(query_embedding, k) return [(texts[i][:max_chunk_length], distances[0][j]) for j, i in enumerate(indices[0])] def agentic_rag(llm, tools, query, context, Use_Tavily=False): # Define the prompt template for the agent search_instructions = ( "Use the search tool if the context is insufficient to answer the question or you are unsure. Give source links if you use the search tool." if Use_Tavily else "Use the context provided to answer the question." ) prompt = ChatPromptTemplate.from_messages([ ("system", """ You are a helpful assistant. {search_instructions} Instructions: 1. Use the provided context to answer the user's question. 2. Provide a clear answer, if you don't know the answer, say 'I don't know'. """), ("human", "Context: {context}\n\nQuestion: {input}"), MessagesPlaceholder(variable_name="chat_history"), MessagesPlaceholder(variable_name="agent_scratchpad"), ]) # Only use tools when Tavily is enabled agent_tools = tools if Use_Tavily else [] try: # Create the agent and executor with appropriate tools agent = create_tool_calling_agent(llm, agent_tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=agent_tools, memory=memory, verbose=True) # Execute the agent return agent_executor.invoke({ "input": query, "context": context, "search_instructions": search_instructions }) except Exception as e: print(f"Error during agent execution: {str(e)}") # Fallback to direct LLM call without agent framework fallback_prompt = ChatPromptTemplate.from_messages([ ("system", "You are a helpful assistant. Use the provided context to answer the user's question."), ("human", "Context: {context}\n\nQuestion: {input}") ]) response = llm.invoke(fallback_prompt.format(context=context, input=query)) return {"output": response.content} if __name__ == "__main__": # Process PDF and prepare index dotenv.load_dotenv() pdf_file = "JatinCV.pdf" llm = model_selection("meta-llama/llama-4-scout-17b-16e-instruct") texts = process_pdf_file(pdf_file) chunks = chunk_text(texts, max_length=1500) model = SentenceTransformer('all-MiniLM-L6-v2') embeddings = create_embeddings(chunks, model) index = build_faiss_index(embeddings) # Chat loop print("Chat with the assistant (type 'exit' or 'quit' to stop):") while True: query = input("User: ") if query.lower() in ["exit", "quit"]: break # Retrieve similar chunks similar_chunks = retrieve_similar_chunks(query, index, chunks, model, k=3) context = "\n".join([chunk for chunk, _ in similar_chunks]) # Generate response response = agentic_rag(llm, tools, query=query, context=context, Use_Tavily=True) print("Assistant:", response["output"])