Spaces:
Running
Running
Jatin Mehra
commited on
Commit
·
9492bcd
1
Parent(s):
ff4330b
Refactor agentic_rag function to include memory parameter and enhance prompt clarity with detailed instructions for context usage and search behavior.
Browse files- preprocessing.py +32 -18
preprocessing.py
CHANGED
@@ -72,7 +72,7 @@ def retrieve_similar_chunks(query, index, chunks, model, k=10, max_chunk_length=
|
|
72 |
distances, indices = index.search(query_embedding, k)
|
73 |
return [(chunks[i]["text"][:max_chunk_length], distances[0][j], chunks[i]["metadata"]) for j, i in enumerate(indices[0])]
|
74 |
|
75 |
-
def agentic_rag(llm, tools, query, context_chunks, Use_Tavily=False):
|
76 |
# Sort chunks by relevance (lower distance = more relevant)
|
77 |
context_chunks = sorted(context_chunks, key=lambda x: x[1]) # Sort by distance
|
78 |
context = ""
|
@@ -87,23 +87,37 @@ def agentic_rag(llm, tools, query, context_chunks, Use_Tavily=False):
|
|
87 |
total_tokens += chunk_tokens
|
88 |
else:
|
89 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# Define prompt template
|
92 |
-
search_instructions = (
|
93 |
-
"Use the search tool if the context is insufficient to answer the question or you are unsure. Give source links if you use the search tool."
|
94 |
-
if Use_Tavily
|
95 |
-
else "Use the context provided to answer the question."
|
96 |
-
)
|
97 |
|
98 |
prompt = ChatPromptTemplate.from_messages([
|
99 |
("system", """
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
("human", "Context: {context}\n\nQuestion: {input}"),
|
108 |
MessagesPlaceholder(variable_name="chat_history"),
|
109 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
@@ -116,7 +130,7 @@ def agentic_rag(llm, tools, query, context_chunks, Use_Tavily=False):
|
|
116 |
return agent_executor.invoke({
|
117 |
"input": query,
|
118 |
"context": context,
|
119 |
-
"
|
120 |
})
|
121 |
except Exception as e:
|
122 |
print(f"Error during agent execution: {str(e)}")
|
@@ -127,7 +141,7 @@ def agentic_rag(llm, tools, query, context_chunks, Use_Tavily=False):
|
|
127 |
response = llm.invoke(fallback_prompt.format(context=context, input=query))
|
128 |
return {"output": response.content}
|
129 |
|
130 |
-
if __name__ == "__main__":
|
131 |
# Process PDF and prepare index
|
132 |
dotenv.load_dotenv()
|
133 |
pdf_file = "JatinCV.pdf"
|
@@ -147,8 +161,8 @@ if __name__ == "__main__":
|
|
147 |
|
148 |
# Retrieve similar chunks
|
149 |
similar_chunks = retrieve_similar_chunks(query, index, chunks, model, k=3)
|
150 |
-
context = "\n".join([chunk for chunk, _ in similar_chunks])
|
151 |
|
152 |
# Generate response
|
153 |
-
response = agentic_rag(llm, tools, query=query, context=
|
154 |
-
print("Assistant:", response["output"])
|
|
|
72 |
distances, indices = index.search(query_embedding, k)
|
73 |
return [(chunks[i]["text"][:max_chunk_length], distances[0][j], chunks[i]["metadata"]) for j, i in enumerate(indices[0])]
|
74 |
|
75 |
+
def agentic_rag(llm, tools, query, context_chunks, memory, Use_Tavily=False):
|
76 |
# Sort chunks by relevance (lower distance = more relevant)
|
77 |
context_chunks = sorted(context_chunks, key=lambda x: x[1]) # Sort by distance
|
78 |
context = ""
|
|
|
87 |
total_tokens += chunk_tokens
|
88 |
else:
|
89 |
break
|
90 |
+
|
91 |
+
# Set up the search behavior
|
92 |
+
search_behavior = (
|
93 |
+
"If the context is insufficient, *then* use the 'search' tool to find the answer."
|
94 |
+
if Use_Tavily
|
95 |
+
else "If the context is insufficient, you *must* state that you don't know."
|
96 |
+
)
|
97 |
|
98 |
# Define prompt template
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
prompt = ChatPromptTemplate.from_messages([
|
101 |
("system", """
|
102 |
+
You are an expert Q&A system. Your primary function is to answer questions using a given set of documents (Context).
|
103 |
+
|
104 |
+
**Your Process:**
|
105 |
+
|
106 |
+
1. **Analyze the Question:** Understand exactly what the user is asking.
|
107 |
+
2. **Scan the Context:** Thoroughly review the 'Context' provided to find relevant information.
|
108 |
+
3. **Formulate the Answer:**
|
109 |
+
* If the context contains a clear answer, synthesize it into a concise response.
|
110 |
+
* **Always** start your answer with "Based on the Document, ...".
|
111 |
+
* {search_behavior}
|
112 |
+
* If, after all steps, you cannot find an answer, respond with: "Based on the Document, I don't know the answer."
|
113 |
+
4. **Clarity:** Ensure your final answer is clear, direct, and avoids jargon if possible.
|
114 |
+
|
115 |
+
**Important Rules:**
|
116 |
+
|
117 |
+
* **Stick to the Context:** Unless you use the search tool, do *not* use any information outside of the provided 'Context'.
|
118 |
+
* **No Speculation:** Do not make assumptions or infer information not explicitly present.
|
119 |
+
* **Cite Sources (If Searching):** If you use the search tool, you MUST include the source links in your response.
|
120 |
+
"""),
|
121 |
("human", "Context: {context}\n\nQuestion: {input}"),
|
122 |
MessagesPlaceholder(variable_name="chat_history"),
|
123 |
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
|
|
130 |
return agent_executor.invoke({
|
131 |
"input": query,
|
132 |
"context": context,
|
133 |
+
"search_behavior": search_behavior
|
134 |
})
|
135 |
except Exception as e:
|
136 |
print(f"Error during agent execution: {str(e)}")
|
|
|
141 |
response = llm.invoke(fallback_prompt.format(context=context, input=query))
|
142 |
return {"output": response.content}
|
143 |
|
144 |
+
"""if __name__ == "__main__":
|
145 |
# Process PDF and prepare index
|
146 |
dotenv.load_dotenv()
|
147 |
pdf_file = "JatinCV.pdf"
|
|
|
161 |
|
162 |
# Retrieve similar chunks
|
163 |
similar_chunks = retrieve_similar_chunks(query, index, chunks, model, k=3)
|
164 |
+
# context = "\n".join([chunk for chunk, _ in similar_chunks])
|
165 |
|
166 |
# Generate response
|
167 |
+
response = agentic_rag(llm, tools, query=query, context=similar_chunks, Use_Tavily=True, memory=memory)
|
168 |
+
print("Assistant:", response["output"])"""
|