Spaces:
Running
Running
Jatin Mehra
commited on
Commit
·
33c5afb
1
Parent(s):
447c09c
Refactor FastAPI application for improved modularity and maintainability
Browse files- app.py +0 -357
- app_refactored.py +107 -0
app.py
DELETED
|
@@ -1,357 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import dotenv
|
| 3 |
-
import pickle
|
| 4 |
-
import uuid
|
| 5 |
-
import shutil
|
| 6 |
-
import traceback
|
| 7 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 8 |
-
from fastapi.responses import JSONResponse
|
| 9 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
-
from fastapi.staticfiles import StaticFiles
|
| 11 |
-
from pydantic import BaseModel
|
| 12 |
-
import uvicorn
|
| 13 |
-
from preprocessing import (
|
| 14 |
-
model_selection,
|
| 15 |
-
process_pdf_file,
|
| 16 |
-
chunk_text,
|
| 17 |
-
create_embeddings,
|
| 18 |
-
build_faiss_index,
|
| 19 |
-
retrieve_similar_chunks,
|
| 20 |
-
agentic_rag,
|
| 21 |
-
tools as global_base_tools,
|
| 22 |
-
create_vector_search_tool
|
| 23 |
-
)
|
| 24 |
-
from sentence_transformers import SentenceTransformer
|
| 25 |
-
from langchain.memory import ConversationBufferMemory
|
| 26 |
-
|
| 27 |
-
# Load environment variables
|
| 28 |
-
dotenv.load_dotenv()
|
| 29 |
-
|
| 30 |
-
# Initialize FastAPI app
|
| 31 |
-
app = FastAPI(title="PDF Insight Beta", description="Agentic RAG for PDF documents")
|
| 32 |
-
|
| 33 |
-
# Add CORS middleware
|
| 34 |
-
app.add_middleware(
|
| 35 |
-
CORSMiddleware,
|
| 36 |
-
allow_origins=["*"],
|
| 37 |
-
allow_credentials=True,
|
| 38 |
-
allow_methods=["*"],
|
| 39 |
-
allow_headers=["*"],
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
# Create upload directory if it doesn't exist
|
| 43 |
-
UPLOAD_DIR = "uploads"
|
| 44 |
-
if not os.path.exists(UPLOAD_DIR):
|
| 45 |
-
os.makedirs(UPLOAD_DIR)
|
| 46 |
-
|
| 47 |
-
# Store active sessions
|
| 48 |
-
sessions = {}
|
| 49 |
-
|
| 50 |
-
# Define model for chat request
|
| 51 |
-
class ChatRequest(BaseModel):
|
| 52 |
-
session_id: str
|
| 53 |
-
query: str
|
| 54 |
-
use_search: bool = False
|
| 55 |
-
model_name: str = "meta-llama/llama-4-scout-17b-16e-instruct"
|
| 56 |
-
|
| 57 |
-
class SessionRequest(BaseModel):
|
| 58 |
-
session_id: str
|
| 59 |
-
|
| 60 |
-
# Function to save session data
|
| 61 |
-
def save_session(session_id, data):
|
| 62 |
-
sessions[session_id] = data # Keep non-picklable in memory for active session
|
| 63 |
-
|
| 64 |
-
pickle_safe_data = {
|
| 65 |
-
"file_path": data.get("file_path"),
|
| 66 |
-
"file_name": data.get("file_name"),
|
| 67 |
-
"chunks": data.get("chunks"), # Chunks with metadata (list of dicts)
|
| 68 |
-
"chat_history": data.get("chat_history", [])
|
| 69 |
-
# FAISS index, embedding model, and LLM model are not pickled, will be reloaded/recreated
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
with open(f"{UPLOAD_DIR}/{session_id}_session.pkl", "wb") as f:
|
| 73 |
-
pickle.dump(pickle_safe_data, f)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
# Function to load session data
|
| 77 |
-
def load_session(session_id, model_name="llama3-8b-8192"): # Ensure model_name matches default
|
| 78 |
-
try:
|
| 79 |
-
if session_id in sessions:
|
| 80 |
-
cached_session = sessions[session_id]
|
| 81 |
-
# Ensure LLM and potentially other non-pickled parts are up-to-date or loaded
|
| 82 |
-
if cached_session.get("llm") is None or (hasattr(cached_session["llm"], "model_name") and cached_session["llm"].model_name != model_name):
|
| 83 |
-
cached_session["llm"] = model_selection(model_name)
|
| 84 |
-
if cached_session.get("model") is None: # Embedding model
|
| 85 |
-
cached_session["model"] = SentenceTransformer('BAAI/bge-large-en-v1.5')
|
| 86 |
-
if cached_session.get("index") is None and cached_session.get("chunks"): # FAISS index
|
| 87 |
-
embeddings, _ = create_embeddings(cached_session["chunks"], cached_session["model"])
|
| 88 |
-
cached_session["index"] = build_faiss_index(embeddings)
|
| 89 |
-
return cached_session, True
|
| 90 |
-
|
| 91 |
-
file_path_pkl = f"{UPLOAD_DIR}/{session_id}_session.pkl"
|
| 92 |
-
if os.path.exists(file_path_pkl):
|
| 93 |
-
with open(file_path_pkl, "rb") as f:
|
| 94 |
-
data = pickle.load(f)
|
| 95 |
-
|
| 96 |
-
original_pdf_path = data.get("file_path")
|
| 97 |
-
if data.get("chunks") and original_pdf_path and os.path.exists(original_pdf_path):
|
| 98 |
-
embedding_model_instance = SentenceTransformer('BAAI/bge-large-en-v1.5')
|
| 99 |
-
# Chunks are already {text: ..., metadata: ...}
|
| 100 |
-
recreated_embeddings, _ = create_embeddings(data["chunks"], embedding_model_instance)
|
| 101 |
-
recreated_index = build_faiss_index(recreated_embeddings)
|
| 102 |
-
recreated_llm = model_selection(model_name)
|
| 103 |
-
|
| 104 |
-
full_session_data = {
|
| 105 |
-
"file_path": original_pdf_path,
|
| 106 |
-
"file_name": data.get("file_name"),
|
| 107 |
-
"chunks": data.get("chunks"), # chunks_with_metadata
|
| 108 |
-
"chat_history": data.get("chat_history", []),
|
| 109 |
-
"model": embedding_model_instance, # SentenceTransformer model
|
| 110 |
-
"index": recreated_index, # FAISS index
|
| 111 |
-
"llm": recreated_llm # LLM
|
| 112 |
-
}
|
| 113 |
-
sessions[session_id] = full_session_data
|
| 114 |
-
return full_session_data, True
|
| 115 |
-
else:
|
| 116 |
-
print(f"Warning: Session data for {session_id} is incomplete or PDF missing. Cannot reconstruct.")
|
| 117 |
-
if os.path.exists(file_path_pkl): os.remove(file_path_pkl) # Clean up stale pkl
|
| 118 |
-
return None, False
|
| 119 |
-
|
| 120 |
-
return None, False
|
| 121 |
-
except Exception as e:
|
| 122 |
-
print(f"Error loading session {session_id}: {str(e)}")
|
| 123 |
-
print(traceback.format_exc())
|
| 124 |
-
return None, False
|
| 125 |
-
|
| 126 |
-
# Function to remove PDF file
|
| 127 |
-
def remove_pdf_file(session_id):
|
| 128 |
-
try:
|
| 129 |
-
# Check if the session exists
|
| 130 |
-
session_path = f"{UPLOAD_DIR}/{session_id}_session.pkl"
|
| 131 |
-
if os.path.exists(session_path):
|
| 132 |
-
# Load session data
|
| 133 |
-
with open(session_path, "rb") as f:
|
| 134 |
-
data = pickle.load(f)
|
| 135 |
-
|
| 136 |
-
# Delete PDF file if it exists
|
| 137 |
-
if data.get("file_path") and os.path.exists(data["file_path"]):
|
| 138 |
-
os.remove(data["file_path"])
|
| 139 |
-
|
| 140 |
-
# Remove session file
|
| 141 |
-
os.remove(session_path)
|
| 142 |
-
|
| 143 |
-
# Remove from memory if exists
|
| 144 |
-
if session_id in sessions:
|
| 145 |
-
del sessions[session_id]
|
| 146 |
-
|
| 147 |
-
return True
|
| 148 |
-
except Exception as e:
|
| 149 |
-
print(f"Error removing PDF file: {str(e)}")
|
| 150 |
-
return False
|
| 151 |
-
|
| 152 |
-
# Mount static files (we'll create these later)
|
| 153 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 154 |
-
|
| 155 |
-
# Route for the home page
|
| 156 |
-
@app.get("/")
|
| 157 |
-
async def read_root():
|
| 158 |
-
from fastapi.responses import RedirectResponse
|
| 159 |
-
return RedirectResponse(url="/static/index.html")
|
| 160 |
-
|
| 161 |
-
# Route to upload a PDF file
|
| 162 |
-
@app.post("/upload-pdf")
|
| 163 |
-
async def upload_pdf(
|
| 164 |
-
file: UploadFile = File(...),
|
| 165 |
-
model_name: str = Form("llama3-8b-8192") # Default model
|
| 166 |
-
):
|
| 167 |
-
session_id = str(uuid.uuid4())
|
| 168 |
-
file_path = None
|
| 169 |
-
|
| 170 |
-
try:
|
| 171 |
-
file_path = f"{UPLOAD_DIR}/{session_id}_{file.filename}"
|
| 172 |
-
with open(file_path, "wb") as buffer:
|
| 173 |
-
shutil.copyfileobj(file.file, buffer)
|
| 174 |
-
|
| 175 |
-
if not os.getenv("GROQ_API_KEY") and "llama" in model_name: # Llama specific check for Groq
|
| 176 |
-
raise ValueError("GROQ_API_KEY is not set for Groq Llama models.")
|
| 177 |
-
if not os.getenv("TAVILY_API_KEY"): # Needed for TavilySearchResults
|
| 178 |
-
print("Warning: TAVILY_API_KEY is not set. Web search will not function.")
|
| 179 |
-
|
| 180 |
-
documents = process_pdf_file(file_path)
|
| 181 |
-
chunks_with_metadata = chunk_text(documents, max_length=1000) # Increased from 256 to 1000 tokens for better context
|
| 182 |
-
|
| 183 |
-
embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5')
|
| 184 |
-
embeddings, _ = create_embeddings(chunks_with_metadata, embedding_model) # Chunks are already with metadata
|
| 185 |
-
|
| 186 |
-
index = build_faiss_index(embeddings)
|
| 187 |
-
llm = model_selection(model_name)
|
| 188 |
-
|
| 189 |
-
session_data = {
|
| 190 |
-
"file_path": file_path,
|
| 191 |
-
"file_name": file.filename,
|
| 192 |
-
"chunks": chunks_with_metadata, # Store chunks with metadata
|
| 193 |
-
"model": embedding_model, # SentenceTransformer instance
|
| 194 |
-
"index": index, # FAISS index instance
|
| 195 |
-
"llm": llm, # LLM instance
|
| 196 |
-
"chat_history": []
|
| 197 |
-
}
|
| 198 |
-
save_session(session_id, session_data)
|
| 199 |
-
|
| 200 |
-
return {"status": "success", "session_id": session_id, "message": f"Processed {file.filename}"}
|
| 201 |
-
|
| 202 |
-
except Exception as e:
|
| 203 |
-
if file_path and os.path.exists(file_path):
|
| 204 |
-
os.remove(file_path)
|
| 205 |
-
error_msg = str(e)
|
| 206 |
-
stack_trace = traceback.format_exc()
|
| 207 |
-
print(f"Error processing PDF: {error_msg}\nStack trace: {stack_trace}")
|
| 208 |
-
return JSONResponse(
|
| 209 |
-
status_code=500, # Internal server error for processing issues
|
| 210 |
-
content={"status": "error", "detail": error_msg, "type": type(e).__name__}
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
# Route to chat with the document
|
| 214 |
-
@app.post("/chat")
|
| 215 |
-
async def chat(request: ChatRequest):
|
| 216 |
-
# Validate query
|
| 217 |
-
if not request.query or not request.query.strip():
|
| 218 |
-
raise HTTPException(status_code=400, detail="Query cannot be empty")
|
| 219 |
-
|
| 220 |
-
if len(request.query.strip()) < 3:
|
| 221 |
-
raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")
|
| 222 |
-
|
| 223 |
-
session, found = load_session(request.session_id, model_name=request.model_name)
|
| 224 |
-
if not found:
|
| 225 |
-
raise HTTPException(status_code=404, detail="Session not found or expired. Please upload a document first.")
|
| 226 |
-
|
| 227 |
-
try:
|
| 228 |
-
# Validate session data integrity
|
| 229 |
-
required_keys = ["index", "chunks", "model", "llm"]
|
| 230 |
-
missing_keys = [key for key in required_keys if key not in session]
|
| 231 |
-
if missing_keys:
|
| 232 |
-
print(f"Warning: Session {request.session_id} missing required data: {missing_keys}")
|
| 233 |
-
raise HTTPException(status_code=500, detail="Session data is incomplete. Please upload the document again.")
|
| 234 |
-
|
| 235 |
-
# Per-request memory to ensure chat history is correctly loaded for the agent
|
| 236 |
-
agent_memory = ConversationBufferMemory(memory_key="chat_history", input_key="input", return_messages=True)
|
| 237 |
-
for entry in session.get("chat_history", []):
|
| 238 |
-
agent_memory.chat_memory.add_user_message(entry["user"])
|
| 239 |
-
agent_memory.chat_memory.add_ai_message(entry["assistant"])
|
| 240 |
-
|
| 241 |
-
# Prepare tools for the agent for THIS request
|
| 242 |
-
current_request_tools = []
|
| 243 |
-
|
| 244 |
-
# 1. Add the document-specific vector search tool
|
| 245 |
-
vector_search_tool_instance = create_vector_search_tool(
|
| 246 |
-
faiss_index=session["index"],
|
| 247 |
-
document_chunks_with_metadata=session["chunks"], # Pass the correct variable
|
| 248 |
-
embedding_model=session["model"], # This is the SentenceTransformer model
|
| 249 |
-
max_chunk_length=1000,
|
| 250 |
-
k=10
|
| 251 |
-
)
|
| 252 |
-
current_request_tools.append(vector_search_tool_instance)
|
| 253 |
-
|
| 254 |
-
# 2. Conditionally add Tavily (web search) tool
|
| 255 |
-
if request.use_search:
|
| 256 |
-
if os.getenv("TAVILY_API_KEY"):
|
| 257 |
-
tavily_tool = next((tool for tool in global_base_tools if tool.name == "tavily_search_results_json"), None)
|
| 258 |
-
if tavily_tool:
|
| 259 |
-
current_request_tools.append(tavily_tool)
|
| 260 |
-
else: # Should not happen if global_base_tools is defined correctly
|
| 261 |
-
print("Warning: Tavily search requested, but tool misconfigured.")
|
| 262 |
-
else:
|
| 263 |
-
print("Warning: Tavily search requested, but TAVILY_API_KEY is not set.")
|
| 264 |
-
|
| 265 |
-
# Retrieve initial similar chunks for RAG context (can be empty if no good match)
|
| 266 |
-
# This context is given to the agent *before* it decides to use tools.
|
| 267 |
-
# k=5 means we retrieve up to 5 chunks for initial context.
|
| 268 |
-
# The agent can then use `vector_database_search` to search more if needed.
|
| 269 |
-
initial_similar_chunks = retrieve_similar_chunks(
|
| 270 |
-
request.query,
|
| 271 |
-
session["index"],
|
| 272 |
-
session["chunks"], # list of dicts {text:..., metadata:...}
|
| 273 |
-
session["model"], # SentenceTransformer model
|
| 274 |
-
k=5 # Number of chunks for initial context
|
| 275 |
-
)
|
| 276 |
-
|
| 277 |
-
print(f"Query: '{request.query}' - Found {len(initial_similar_chunks)} initial chunks")
|
| 278 |
-
if initial_similar_chunks:
|
| 279 |
-
print(f"Best chunk score: {initial_similar_chunks[0][1]:.4f}")
|
| 280 |
-
|
| 281 |
-
response = agentic_rag(
|
| 282 |
-
session["llm"],
|
| 283 |
-
current_request_tools, # Pass the dynamically assembled list of tools
|
| 284 |
-
query=request.query,
|
| 285 |
-
context_chunks=initial_similar_chunks,
|
| 286 |
-
Use_Tavily=request.use_search, # Still passed to agentic_rag for potential fine-grained logic, though prompt adapts to tools
|
| 287 |
-
memory=agent_memory
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
response_output = response.get("output", "Sorry, I could not generate a response.")
|
| 291 |
-
print(f"Generated response length: {len(response_output)} characters")
|
| 292 |
-
|
| 293 |
-
session["chat_history"].append({"user": request.query, "assistant": response_output})
|
| 294 |
-
save_session(request.session_id, session) # Save updated history and potentially other modified session state
|
| 295 |
-
|
| 296 |
-
return {
|
| 297 |
-
"status": "success",
|
| 298 |
-
"answer": response_output,
|
| 299 |
-
# Return context that was PRE-FETCHED for the agent, not necessarily all context it might have used via tools
|
| 300 |
-
"context_used": [{"text": chunk, "score": float(score), "metadata": meta} for chunk, score, meta in initial_similar_chunks]
|
| 301 |
-
}
|
| 302 |
-
|
| 303 |
-
except Exception as e:
|
| 304 |
-
print(f"Error processing chat query: {str(e)}\nTraceback: {traceback.format_exc()}")
|
| 305 |
-
raise HTTPException(status_code=500, detail=f"Error processing query: {str(e)}")
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
# Route to get chat history
|
| 309 |
-
@app.post("/chat-history")
|
| 310 |
-
async def get_chat_history(request: SessionRequest):
|
| 311 |
-
# Try to load session if not in memory
|
| 312 |
-
session, found = load_session(request.session_id)
|
| 313 |
-
if not found:
|
| 314 |
-
raise HTTPException(status_code=404, detail="Session not found")
|
| 315 |
-
|
| 316 |
-
return {
|
| 317 |
-
"status": "success",
|
| 318 |
-
"history": session.get("chat_history", [])
|
| 319 |
-
}
|
| 320 |
-
|
| 321 |
-
# Route to clear chat history
|
| 322 |
-
@app.post("/clear-history")
|
| 323 |
-
async def clear_history(request: SessionRequest):
|
| 324 |
-
# Try to load session if not in memory
|
| 325 |
-
session, found = load_session(request.session_id)
|
| 326 |
-
if not found:
|
| 327 |
-
raise HTTPException(status_code=404, detail="Session not found")
|
| 328 |
-
|
| 329 |
-
session["chat_history"] = []
|
| 330 |
-
save_session(request.session_id, session)
|
| 331 |
-
|
| 332 |
-
return {"status": "success", "message": "Chat history cleared"}
|
| 333 |
-
|
| 334 |
-
# Route to remove PDF from session
|
| 335 |
-
@app.post("/remove-pdf")
|
| 336 |
-
async def remove_pdf(request: SessionRequest):
|
| 337 |
-
success = remove_pdf_file(request.session_id)
|
| 338 |
-
|
| 339 |
-
if success:
|
| 340 |
-
return {"status": "success", "message": "PDF file and session removed successfully"}
|
| 341 |
-
else:
|
| 342 |
-
raise HTTPException(status_code=404, detail="Session not found or could not be removed")
|
| 343 |
-
|
| 344 |
-
# Route to list available models
|
| 345 |
-
@app.get("/models")
|
| 346 |
-
async def get_models():
|
| 347 |
-
# You can expand this list as needed
|
| 348 |
-
models = [
|
| 349 |
-
{"id": "meta-llama/llama-4-scout-17b-16e-instruct", "name": "Llama 4 Scout 17B"},
|
| 350 |
-
{"id": "llama-3.1-8b-instant", "name": "Llama 3.1 8B Instant"},
|
| 351 |
-
{"id": "llama-3.3-70b-versatile", "name": "Llama 3.3 70B Versatile"},
|
| 352 |
-
]
|
| 353 |
-
return {"models": models}
|
| 354 |
-
|
| 355 |
-
# Run the application if this file is executed directly
|
| 356 |
-
if __name__ == "__main__":
|
| 357 |
-
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_refactored.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Refactored FastAPI application for PDF Insight Beta.
|
| 3 |
+
|
| 4 |
+
This is the main application file that sets up the FastAPI app with modular components.
|
| 5 |
+
The core logic has been preserved while improving code organization and maintainability.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import uvicorn
|
| 9 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
| 10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 11 |
+
from fastapi.staticfiles import StaticFiles
|
| 12 |
+
|
| 13 |
+
from configs.config import Config
|
| 14 |
+
from models.models import (
|
| 15 |
+
ChatRequest, SessionRequest, UploadResponse, ChatResponse,
|
| 16 |
+
ChatHistoryResponse, StatusResponse, ModelsResponse
|
| 17 |
+
)
|
| 18 |
+
from api import (
|
| 19 |
+
upload_pdf_handler, chat_handler, get_chat_history_handler,
|
| 20 |
+
clear_history_handler, remove_pdf_handler, root_handler, get_models_handler
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def create_app() -> FastAPI:
|
| 25 |
+
"""
|
| 26 |
+
Create and configure the FastAPI application.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
Configured FastAPI application instance
|
| 30 |
+
"""
|
| 31 |
+
# Initialize FastAPI app
|
| 32 |
+
app = FastAPI(
|
| 33 |
+
title="PDF Insight Beta",
|
| 34 |
+
description="Agentic RAG for PDF documents"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Add CORS middleware
|
| 38 |
+
app.add_middleware(
|
| 39 |
+
CORSMiddleware,
|
| 40 |
+
allow_origins=Config.CORS_ORIGINS,
|
| 41 |
+
allow_credentials=Config.CORS_CREDENTIALS,
|
| 42 |
+
allow_methods=Config.CORS_METHODS,
|
| 43 |
+
allow_headers=Config.CORS_HEADERS,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Mount static files
|
| 47 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 48 |
+
|
| 49 |
+
return app
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Create app instance
|
| 53 |
+
app = create_app()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Route definitions
|
| 57 |
+
@app.get("/")
|
| 58 |
+
async def read_root():
|
| 59 |
+
"""Root endpoint that redirects to the main application."""
|
| 60 |
+
return await root_handler()
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@app.post("/upload-pdf", response_model=UploadResponse)
|
| 64 |
+
async def upload_pdf(file: UploadFile = File(...), model_name: str = Form(Config.DEFAULT_MODEL)):
|
| 65 |
+
"""Upload and process a PDF file."""
|
| 66 |
+
return await upload_pdf_handler(file, model_name)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 70 |
+
async def chat(request: ChatRequest):
|
| 71 |
+
"""Chat with the uploaded document."""
|
| 72 |
+
return await chat_handler(request)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@app.post("/chat-history", response_model=ChatHistoryResponse)
|
| 76 |
+
async def get_chat_history(request: SessionRequest):
|
| 77 |
+
"""Get chat history for a session."""
|
| 78 |
+
return await get_chat_history_handler(request)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
@app.post("/clear-history", response_model=StatusResponse)
|
| 82 |
+
async def clear_history(request: SessionRequest):
|
| 83 |
+
"""Clear chat history for a session."""
|
| 84 |
+
return await clear_history_handler(request)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@app.post("/remove-pdf", response_model=StatusResponse)
|
| 88 |
+
async def remove_pdf(request: SessionRequest):
|
| 89 |
+
"""Remove PDF file and session data."""
|
| 90 |
+
return await remove_pdf_handler(request)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@app.get("/models", response_model=ModelsResponse)
|
| 94 |
+
async def get_models():
|
| 95 |
+
"""Get list of available models."""
|
| 96 |
+
return await get_models_handler()
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def main():
|
| 100 |
+
"""
|
| 101 |
+
Main entry point for running the application.
|
| 102 |
+
"""
|
| 103 |
+
uvicorn.run("app_refactored:app", host="0.0.0.0", port=8000, reload=True)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if __name__ == "__main__":
|
| 107 |
+
main()
|