Spaces:
Running
Running
Jatin Mehra
Refactor preprocessing.py to enhance PDF processing and integrate FAISS for similarity search
eb07e3c
import os | |
from langchain_community.document_loaders import PyMuPDFLoader | |
import faiss | |
from langchain_groq import ChatGroq | |
from langchain.agents import AgentExecutor, create_tool_calling_agent | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.memory import ConversationBufferMemory | |
from sentence_transformers import SentenceTransformer | |
import dotenv | |
dotenv.load_dotenv() | |
# Initialize LLM and tools globally | |
def model_selection(model_name): | |
llm = ChatGroq(model=model_name, api_key=os.getenv("GROQ_API_KEY")) | |
return llm | |
tools = [TavilySearchResults(max_results=5)] | |
# Initialize memory for conversation history | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
def estimate_tokens(text): | |
"""Estimate the number of tokens in a text (rough approximation).""" | |
return len(text) // 4 | |
def process_pdf_file(file_path): | |
"""Load a PDF file and extract its text.""" | |
if not os.path.exists(file_path): | |
raise FileNotFoundError(f"The file {file_path} does not exist.") | |
loader = PyMuPDFLoader(file_path) | |
documents = loader.load() | |
text = "".join(doc.page_content for doc in documents) | |
return text | |
def chunk_text(text, max_length=1500): | |
"""Split text into chunks based on paragraphs, respecting max_length.""" | |
paragraphs = text.split("\n\n") | |
chunks = [] | |
current_chunk = "" | |
for paragraph in paragraphs: | |
if len(current_chunk) + len(paragraph) <= max_length: | |
current_chunk += paragraph + "\n\n" | |
else: | |
chunks.append(current_chunk.strip()) | |
current_chunk = paragraph + "\n\n" | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
def create_embeddings(texts, model): | |
"""Create embeddings for a list of texts using the provided model.""" | |
embeddings = model.encode(texts, show_progress_bar=True, convert_to_tensor=True) | |
return embeddings.cpu().numpy() | |
def build_faiss_index(embeddings): | |
"""Build a FAISS index from embeddings for similarity search.""" | |
dim = embeddings.shape[1] | |
index = faiss.IndexFlatL2(dim) | |
index.add(embeddings) | |
return index | |
def retrieve_similar_chunks(query, index, texts, model, k=3, max_chunk_length=3500): | |
"""Retrieve top k similar chunks to the query from the FAISS index.""" | |
query_embedding = model.encode([query], convert_to_tensor=True).cpu().numpy() | |
distances, indices = index.search(query_embedding, k) | |
return [(texts[i][:max_chunk_length], distances[0][j]) for j, i in enumerate(indices[0])] | |
def agentic_rag(llm, tools, query, context, Use_Tavily=False): | |
# Define the prompt template for the agent | |
search_instructions = ( | |
"Use the search tool if the context is insufficient to answer the question or you are unsure. Give source links if you use the search tool." | |
if Use_Tavily | |
else "Use the context provided to answer the question." | |
) | |
prompt = ChatPromptTemplate.from_messages([ | |
("system", """ | |
You are a helpful assistant. {search_instructions} | |
Instructions: | |
1. Use the provided context to answer the user's question. | |
2. Provide a clear answer, if you don't know the answer, say 'I don't know'. | |
"""), | |
("human", "Context: {context}\n\nQuestion: {input}"), | |
MessagesPlaceholder(variable_name="chat_history"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
]) | |
# Only use tools when Tavily is enabled | |
agent_tools = tools if Use_Tavily else [] | |
try: | |
# Create the agent and executor with appropriate tools | |
agent = create_tool_calling_agent(llm, agent_tools, prompt) | |
agent_executor = AgentExecutor(agent=agent, tools=agent_tools, memory=memory, verbose=True) | |
# Execute the agent | |
return agent_executor.invoke({ | |
"input": query, | |
"context": context, | |
"search_instructions": search_instructions | |
}) | |
except Exception as e: | |
print(f"Error during agent execution: {str(e)}") | |
# Fallback to direct LLM call without agent framework | |
fallback_prompt = ChatPromptTemplate.from_messages([ | |
("system", "You are a helpful assistant. Use the provided context to answer the user's question."), | |
("human", "Context: {context}\n\nQuestion: {input}") | |
]) | |
response = llm.invoke(fallback_prompt.format(context=context, input=query)) | |
return {"output": response.content} | |
if __name__ == "__main__": | |
# Process PDF and prepare index | |
dotenv.load_dotenv() | |
pdf_file = "JatinCV.pdf" | |
llm = model_selection("meta-llama/llama-4-scout-17b-16e-instruct") | |
texts = process_pdf_file(pdf_file) | |
chunks = chunk_text(texts, max_length=1500) | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
embeddings = create_embeddings(chunks, model) | |
index = build_faiss_index(embeddings) | |
# Chat loop | |
print("Chat with the assistant (type 'exit' or 'quit' to stop):") | |
while True: | |
query = input("User: ") | |
if query.lower() in ["exit", "quit"]: | |
break | |
# Retrieve similar chunks | |
similar_chunks = retrieve_similar_chunks(query, index, chunks, model, k=3) | |
context = "\n".join([chunk for chunk, _ in similar_chunks]) | |
# Generate response | |
response = agentic_rag(llm, tools, query=query, context=context, Use_Tavily=True) | |
print("Assistant:", response["output"]) |