Spaces:
Running
Running
File size: 7,981 Bytes
ba907cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
"""
Session management service.
This module provides high-level session management operations.
"""
import uuid
from typing import Dict, Any, Tuple, Optional
from sentence_transformers import SentenceTransformer
from configs.config import Config, ErrorMessages
from services.llm_service import create_llm_model
from utils import (
save_session_to_file,
load_session_from_file,
reconstruct_session_objects,
cleanup_session_files,
validate_session_data,
session_exists,
create_embeddings,
build_faiss_index
)
class SessionManager:
"""Manager for session operations."""
def __init__(self):
"""Initialize session manager."""
self.active_sessions: Dict[str, Dict[str, Any]] = {}
def create_session(
self,
file_path: str,
file_name: str,
chunks_with_metadata: list,
model_name: str
) -> str:
"""
Create a new session with processed document data.
Args:
file_path: Path to the uploaded file
file_name: Original filename
chunks_with_metadata: Processed document chunks
model_name: LLM model name
Returns:
Session ID
"""
session_id = str(uuid.uuid4())
# Create embedding model and process chunks
embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL)
embeddings, _ = create_embeddings(chunks_with_metadata, embedding_model)
# Build FAISS index
index = build_faiss_index(embeddings)
# Create LLM
llm = create_llm_model(model_name)
# Create session data
session_data = {
"file_path": file_path,
"file_name": file_name,
"chunks": chunks_with_metadata,
"model": embedding_model,
"index": index,
"llm": llm,
"chat_history": []
}
# Save to memory and file
self.active_sessions[session_id] = session_data
save_session_to_file(session_id, session_data)
return session_id
def get_session(
self,
session_id: str,
model_name: str = None
) -> Tuple[Optional[Dict[str, Any]], bool]:
"""
Retrieve session data, loading from file if necessary.
Args:
session_id: Session identifier
model_name: LLM model name (for reconstruction)
Returns:
Tuple of (session_data, found)
"""
if model_name is None:
model_name = Config.DEFAULT_MODEL
try:
# Check if session is in memory
if session_id in self.active_sessions:
cached_session = self.active_sessions[session_id]
# Ensure LLM is up-to-date
if (cached_session.get("llm") is None or
(hasattr(cached_session["llm"], "model_name") and
cached_session["llm"].model_name != model_name)):
cached_session["llm"] = create_llm_model(model_name)
# Ensure embedding model exists
if cached_session.get("model") is None:
cached_session["model"] = SentenceTransformer(Config.EMBEDDING_MODEL)
# Ensure FAISS index exists
if cached_session.get("index") is None and cached_session.get("chunks"):
embeddings, _ = create_embeddings(
cached_session["chunks"],
cached_session["model"]
)
cached_session["index"] = build_faiss_index(embeddings)
return cached_session, True
# Try to load from file
data, success = load_session_from_file(session_id)
if not success:
return None, False
# Check if original PDF exists
original_pdf_path = data.get("file_path")
if not (data.get("chunks") and original_pdf_path and
session_exists(session_id)):
print(f"Warning: Session data for {session_id} is incomplete or PDF missing.")
cleanup_session_files(session_id)
return None, False
# Reconstruct session objects
embedding_model = SentenceTransformer(Config.EMBEDDING_MODEL)
full_session_data = reconstruct_session_objects(
data, model_name, embedding_model
)
# Cache in memory
self.active_sessions[session_id] = full_session_data
return full_session_data, True
except Exception as e:
print(f"Error loading session {session_id}: {str(e)}")
return None, False
def save_session(self, session_id: str, session_data: Dict[str, Any]) -> bool:
"""
Save session data to memory and file.
Args:
session_id: Session identifier
session_data: Session data to save
Returns:
True if successful, False otherwise
"""
# Update memory cache
self.active_sessions[session_id] = session_data
# Save to file
return save_session_to_file(session_id, session_data)
def remove_session(self, session_id: str) -> bool:
"""
Remove session and associated files.
Args:
session_id: Session identifier
Returns:
True if successful, False otherwise
"""
try:
# Remove from memory
if session_id in self.active_sessions:
del self.active_sessions[session_id]
# Clean up files
return cleanup_session_files(session_id)
except Exception as e:
print(f"Error removing session {session_id}: {str(e)}")
return False
def clear_chat_history(self, session_id: str) -> bool:
"""
Clear chat history for a session.
Args:
session_id: Session identifier
Returns:
True if successful, False otherwise
"""
session_data, found = self.get_session(session_id)
if not found:
return False
session_data["chat_history"] = []
return self.save_session(session_id, session_data)
def add_chat_entry(
self,
session_id: str,
user_message: str,
assistant_message: str
) -> bool:
"""
Add a chat entry to session history.
Args:
session_id: Session identifier
user_message: User's message
assistant_message: Assistant's response
Returns:
True if successful, False otherwise
"""
session_data, found = self.get_session(session_id)
if not found:
return False
session_data["chat_history"].append({
"user": user_message,
"assistant": assistant_message
})
return self.save_session(session_id, session_data)
def validate_session(self, session_id: str) -> Tuple[bool, list]:
"""
Validate session data integrity.
Args:
session_id: Session identifier
Returns:
Tuple of (is_valid, missing_keys)
"""
session_data, found = self.get_session(session_id)
if not found:
return False, ["session_not_found"]
return validate_session_data(session_data)
# Global session manager instance
session_manager = SessionManager()
|