Spaces:
Running
Running
File size: 16,066 Bytes
ba907cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
RAG (Retrieval Augmented Generation) service.
This module provides the RAG implementation with tool creation and agent management.
"""
import traceback
from typing import List, Dict, Any, Optional, Tuple
from langchain.tools import tool
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer
import faiss
from configs.config import Config
from utils import (
retrieve_similar_chunks,
filter_relevant_chunks,
prepare_context_from_chunks
)
from services.llm_service import create_tavily_search_tool
def create_vector_search_tool(
faiss_index: faiss.IndexHNSWFlat,
document_chunks_with_metadata: List[Dict[str, Any]],
embedding_model: SentenceTransformer,
k: int = None,
max_chunk_length: int = None
):
"""
Create a vector search tool for document retrieval.
Args:
faiss_index: FAISS index for similarity search
document_chunks_with_metadata: List of document chunks
embedding_model: SentenceTransformer model
k: Number of chunks to retrieve
max_chunk_length: Maximum chunk length
Returns:
LangChain tool for vector search
"""
if k is None:
k = Config.DEFAULT_K_CHUNKS // 3 # Use fewer chunks for tool
if max_chunk_length is None:
max_chunk_length = Config.DEFAULT_CHUNK_SIZE
@tool
def vector_database_search(query: str) -> str:
"""Search the uploaded PDF document for information related to the query.
Args:
query: The search query string to find relevant information in the document.
Returns:
A string containing relevant information found in the document.
"""
# Handle very short or empty queries
if not query or len(query.strip()) < 3:
return "Please provide a more specific search query with at least 3 characters."
try:
# Retrieve similar chunks using the provided session-specific components
similar_chunks_data = retrieve_similar_chunks(
query,
faiss_index,
document_chunks_with_metadata,
embedding_model,
k=k,
max_chunk_length=max_chunk_length
)
# Format the response
if not similar_chunks_data:
return "No relevant information found in the document for that query. Please try rephrasing your question or using different keywords."
# Filter out chunks with very high distance (low similarity)
filtered_chunks = filter_relevant_chunks(similar_chunks_data)
if not filtered_chunks:
return "No sufficiently relevant information found in the document for that query. Please try rephrasing your question or using different keywords."
context = "\n\n---\n\n".join([chunk_text for chunk_text, _, _ in filtered_chunks])
return f"The following information was found in the document regarding '{query}':\n{context}"
except Exception as e:
print(f"Error in vector search tool: {e}")
return f"Error searching the document: {str(e)}"
return vector_database_search
class RAGService:
"""Service for RAG operations."""
def __init__(self):
"""Initialize RAG service."""
self.tavily_tool = create_tavily_search_tool()
def create_agent_tools(
self,
faiss_index: faiss.IndexHNSWFlat,
document_chunks: List[Dict[str, Any]],
embedding_model: SentenceTransformer,
use_web_search: bool = False
) -> List:
"""
Create tools for the RAG agent.
Args:
faiss_index: FAISS index
document_chunks: Document chunks
embedding_model: Embedding model
use_web_search: Whether to include web search tool
Returns:
List of tools for the agent
"""
tools = []
# Add vector search tool
vector_tool = create_vector_search_tool(
faiss_index=faiss_index,
document_chunks_with_metadata=document_chunks,
embedding_model=embedding_model,
max_chunk_length=Config.DEFAULT_CHUNK_SIZE,
k=10
)
tools.append(vector_tool)
# Add web search tool if requested and available
if use_web_search and self.tavily_tool:
tools.append(self.tavily_tool)
return tools
def create_agent_prompt(self, has_document_search: bool, has_web_search: bool) -> ChatPromptTemplate:
"""
Create prompt template for the agent.
Args:
has_document_search: Whether document search is available
has_web_search: Whether web search is available
Returns:
ChatPromptTemplate for the agent
"""
# Build tool instructions dynamically
tool_instructions = ""
if has_document_search:
tool_instructions += "Use vector_database_search to find information in the uploaded document. "
if has_web_search:
tool_instructions += "Use tavily_search_results_json for web searches when document search is insufficient. "
if not tool_instructions:
tool_instructions = "Answer based on the provided context only. "
return ChatPromptTemplate.from_messages([
("system", f"""You are a helpful AI assistant that answers questions about documents.
Context: {{context}}
Tools available: {tool_instructions}
Instructions:
- Use the provided context first
- If context is insufficient, use available tools to search for more information
- Provide clear, helpful answers
- If you cannot find an answer, say so clearly"""),
("human", "{input}"),
MessagesPlaceholder(variable_name="chat_history"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
def execute_agent(
self,
llm,
tools: List,
query: str,
context: str,
memory: ConversationBufferMemory
) -> Dict[str, Any]:
"""
Execute the RAG agent with given tools and context.
Args:
llm: Language model
tools: List of tools
query: User query
context: Context string
memory: Conversation memory
Returns:
Agent response
"""
try:
# Validate tools
for tool in tools:
if not hasattr(tool, 'name') or not hasattr(tool, 'description'):
raise ValueError(f"Tool {tool} is missing required attributes")
# Create prompt
has_document_search = any(t.name == "vector_database_search" for t in tools)
has_web_search = any(t.name == "tavily_search_results_json" for t in tools)
prompt = self.create_agent_prompt(has_document_search, has_web_search)
# Create agent
agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=Config.AGENT_VERBOSE,
handle_parsing_errors=True,
max_iterations=Config.AGENT_MAX_ITERATIONS,
return_intermediate_steps=False,
early_stopping_method="generate"
)
# Execute agent
agent_input = {
"input": query,
"context": context,
}
response_payload = agent_executor.invoke(agent_input)
# Validate response
agent_output = response_payload.get("output", "") if response_payload else ""
if not agent_output or len(agent_output.strip()) < 10:
raise ValueError("Insufficient response from agent")
# Check for incomplete responses
problematic_prefixes = [
"Based on the Document,",
"According to a web search,",
"Based on the available information,",
"I need to",
"Let me"
]
stripped_output = agent_output.strip()
if any(stripped_output == prefix.strip() or
stripped_output == prefix.strip() + "."
for prefix in problematic_prefixes):
raise ValueError("Agent returned incomplete response")
return response_payload
except Exception as e:
raise
def fallback_response(
self,
llm,
tools: List,
query: str,
context: str,
use_tavily: bool = False
) -> Dict[str, Any]:
"""
Generate fallback response using direct tool usage or LLM.
Args:
llm: Language model
tools: List of available tools
query: User query
context: Context string
use_tavily: Whether to use web search
Returns:
Fallback response
"""
try:
tool_results = []
# Try vector search first if available
vector_tool = next((t for t in tools if t.name == "vector_database_search"), None)
if vector_tool:
try:
search_result = vector_tool.run(query)
if search_result and "No relevant information" not in search_result:
tool_results.append(f"Document Search: {search_result}")
except Exception as tool_error:
pass
# Try web search if needed and available
if use_tavily:
web_tool = next((t for t in tools if t.name == "tavily_search_results_json"), None)
if web_tool:
try:
web_result = web_tool.run(query)
if web_result:
tool_results.append(f"Web Search: {web_result}")
except Exception as tool_error:
pass
# Combine tool results with context
enhanced_context = context
if tool_results:
enhanced_context += "\n\nAdditional Information:\n" + "\n\n".join(tool_results)
# Use direct LLM call with enhanced context
direct_prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant. Use the provided context and information to answer the user's question clearly and completely."),
("human", "Context and Information: {context}\n\nQuestion: {input}")
])
formatted_prompt = direct_prompt.format_prompt(
context=enhanced_context,
input=query
).to_messages()
response = llm.invoke(formatted_prompt)
direct_output = response.content if hasattr(response, 'content') else str(response)
return {"output": direct_output}
except Exception as manual_error:
# Final fallback - simple LLM response
fallback_prompt = ChatPromptTemplate.from_messages([
("system", """You are a helpful assistant that answers questions about documents.
Use the provided context to answer the user's question.
If the context contains relevant information, start your answer with "Based on the document, ..."
If the context is insufficient, clearly state what you don't know."""),
("human", "Context: {context}\n\nQuestion: {input}")
])
formatted_fallback = fallback_prompt.format_prompt(
context=context,
input=query
).to_messages()
response = llm.invoke(formatted_fallback)
fallback_output = response.content if hasattr(response, 'content') else str(response)
return {"output": fallback_output}
def generate_response(
self,
llm,
query: str,
context_chunks: List[Tuple],
faiss_index: faiss.IndexHNSWFlat,
document_chunks: List[Dict[str, Any]],
embedding_model: SentenceTransformer,
memory: ConversationBufferMemory,
use_tavily: bool = False
) -> Dict[str, Any]:
"""
Generate RAG response using agent or fallback methods.
Args:
llm: Language model
query: User query
context_chunks: Initial context chunks
faiss_index: FAISS index
document_chunks: Document chunks
embedding_model: Embedding model
memory: Conversation memory
use_tavily: Whether to use web search
Returns:
Generated response
"""
# Validate inputs
if not query or not query.strip():
return {"output": "Please provide a valid question."}
# Create tools
tools = self.create_agent_tools(
faiss_index, document_chunks, embedding_model, use_tavily
)
if not tools:
fallback_prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant that answers questions about documents. Use the provided context to answer the user's question."),
("human", "Context: {context}\n\nQuestion: {input}")
])
try:
formatted_prompt = fallback_prompt.format_prompt(
context="No context available",
input=query
).to_messages()
response = llm.invoke(formatted_prompt)
return {"output": response.content if hasattr(response, 'content') else str(response)}
except Exception as e:
return {"output": "I'm sorry, I encountered an error processing your request."}
# Prepare context
context = prepare_context_from_chunks(context_chunks)
# Try agent execution
if not tools:
# Handle case where no tools are available
fallback_prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant that answers questions about documents. Use the provided context to answer the user's question."),
("human", "Context: {context}\n\nQuestion: {input}")
])
formatted_prompt = fallback_prompt.format_prompt(
context=context,
input=query
).to_messages()
response = llm.invoke(formatted_prompt)
return {"output": response.content if hasattr(response, 'content') else str(response)}
try:
return self.execute_agent(llm, tools, query, context, memory)
except Exception as e:
error_msg = str(e)
# Try fallback approach
try:
return self.fallback_response(llm, tools, query, context, use_tavily)
except Exception as fallback_error:
return {"output": "I'm sorry, I encountered an error processing your request. Please try again."}
# Global RAG service instance
rag_service = RAGService()
|