File size: 8,456 Bytes
52c6dbe
a193f24
a0f5aa1
a193f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c6dbe
a193f24
 
 
 
 
 
 
 
 
 
52c6dbe
 
a193f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c6dbe
a193f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c6dbe
a193f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0f5aa1
a193f24
 
a0f5aa1
a193f24
 
 
 
 
 
 
 
 
 
 
 
 
 
52c6dbe
a193f24
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import dotenv
import pickle
import uuid
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, BackgroundTasks, Request
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import uvicorn
from preprocessing import (
    model_selection,
    process_pdf_file,
    chunk_text,
    create_embeddings,
    build_faiss_index,
    retrieve_similar_chunks,
    agentic_rag,
    tools,
    memory
)
from sentence_transformers import SentenceTransformer
import shutil
import traceback

# Load environment variables
dotenv.load_dotenv()

# Initialize FastAPI app
app = FastAPI(title="PDF Insight Beta", description="Agentic RAG for PDF documents")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Create upload directory if it doesn't exist
UPLOAD_DIR = "uploads"
if not os.path.exists(UPLOAD_DIR):
    os.makedirs(UPLOAD_DIR)

# Store active sessions
sessions = {}

# Define model for chat request
class ChatRequest(BaseModel):
    session_id: str
    query: str
    use_search: bool = False
    model_name: str = "meta-llama/llama-4-scout-17b-16e-instruct"

class SessionRequest(BaseModel):
    session_id: str

# Function to save session data
def save_session(session_id, data):
    sessions[session_id] = data
    
    # Create a copy of data that is safe to pickle
    pickle_safe_data = {
        "file_path": data.get("file_path"),
        "file_name": data.get("file_name"),
        "chunks": data.get("chunks"),
        "chat_history": data.get("chat_history", [])
    }
    
    # Persist to disk
    with open(f"{UPLOAD_DIR}/{session_id}_session.pkl", "wb") as f:
        pickle.dump(pickle_safe_data, f)

# Function to load session data
def load_session(session_id, model_name="meta-llama/llama-4-scout-17b-16e-instruct"):
    try:
        # Check if session is already in memory
        if session_id in sessions:
            return sessions[session_id], True
        
        # Try to load from disk
        file_path = f"{UPLOAD_DIR}/{session_id}_session.pkl"
        if os.path.exists(file_path):
            with open(file_path, "rb") as f:
                data = pickle.load(f)
            
            # Recreate non-pickled objects
            if data.get("chunks") and data.get("file_path") and os.path.exists(data["file_path"]):
                # Recreate model, embeddings and index
                model = SentenceTransformer('all-MiniLM-L6-v2')
                embeddings = create_embeddings(data["chunks"], model)
                index = build_faiss_index(embeddings)
                
                # Recreate LLM
                llm = model_selection(model_name)
                
                # Reconstruct full session data
                data["model"] = model
                data["index"] = index
                data["llm"] = llm
                
                # Store in memory
                sessions[session_id] = data
                return data, True
        
        return None, False
    except Exception as e:
        print(f"Error loading session: {str(e)}")
        return None, False

# Mount static files (we'll create these later)
app.mount("/static", StaticFiles(directory="static"), name="static")

# Route for the home page
@app.get("/")
async def read_root():
    return {"status": "ok", "message": "PDF Insight Beta API is running"}

# Route to upload a PDF file
@app.post("/upload-pdf")
async def upload_pdf(
    file: UploadFile = File(...), 
    model_name: str = Form("meta-llama/llama-4-scout-17b-16e-instruct")
):
    # Generate a unique session ID
    session_id = str(uuid.uuid4())
    file_path = None
    
    try:
        # Save the uploaded file
        file_path = f"{UPLOAD_DIR}/{session_id}_{file.filename}"
        with open(file_path, "wb") as buffer:
            shutil.copyfileobj(file.file, buffer)
        
        # Check if API keys are set
        if not os.getenv("GROQ_API_KEY"):
            raise ValueError("GROQ_API_KEY is not set in the environment variables")
        
        # Process the PDF
        text = process_pdf_file(file_path)
        chunks = chunk_text(text, max_length=1500)
        
        # Create embeddings
        model = SentenceTransformer('all-MiniLM-L6-v2')
        embeddings = create_embeddings(chunks, model)
        index = build_faiss_index(embeddings)
        
        # Initialize LLM
        llm = model_selection(model_name)
        
        # Save session data
        session_data = {
            "file_path": file_path,
            "file_name": file.filename,
            "chunks": chunks,
            "model": model,
            "index": index,
            "llm": llm,
            "chat_history": []
        }
        save_session(session_id, session_data)
        
        return {"status": "success", "session_id": session_id, "message": f"Processed {file.filename}"}
    
    except Exception as e:
        # Clean up on error
        if file_path and os.path.exists(file_path):
            os.remove(file_path)
            
        error_msg = str(e)
        stack_trace = traceback.format_exc()
        print(f"Error processing PDF: {error_msg}")
        print(f"Stack trace: {stack_trace}")
        
        return JSONResponse(
            status_code=400,
            content={
                "status": "error",
                "detail": error_msg,
                "type": type(e).__name__
            }
        )

# Route to chat with the document
@app.post("/chat")
async def chat(request: ChatRequest):
    # Try to load session if not in memory
    session, found = load_session(request.session_id, model_name=request.model_name)
    if not found:
        raise HTTPException(status_code=404, detail="Session not found. Please upload a document first.")
    
    try:
        # Retrieve similar chunks
        similar_chunks = retrieve_similar_chunks(
            request.query, 
            session["index"], 
            session["chunks"], 
            session["model"], 
            k=3
        )
        context = "\n".join([chunk for chunk, _ in similar_chunks])
        
        # Generate response using agentic_rag
        response = agentic_rag(
            session["llm"], 
            tools, 
            query=request.query, 
            context=context, 
            Use_Tavily=request.use_search
        )
        
        # Update chat history
        session["chat_history"].append({"user": request.query, "assistant": response["output"]})
        save_session(request.session_id, session)
        
        return {
            "status": "success", 
            "answer": response["output"],
            "context_used": [{"text": chunk, "score": float(score)} for chunk, score in similar_chunks]
        }
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing query: {str(e)}")

# Route to get chat history
@app.post("/chat-history")
async def get_chat_history(request: SessionRequest):
    # Try to load session if not in memory
    session, found = load_session(request.session_id)
    if not found:
        raise HTTPException(status_code=404, detail="Session not found")
    
    return {
        "status": "success", 
        "history": session.get("chat_history", [])
    }

# Route to clear chat history
@app.post("/clear-history")
async def clear_history(request: SessionRequest):
    # Try to load session if not in memory
    session, found = load_session(request.session_id)
    if not found:
        raise HTTPException(status_code=404, detail="Session not found")
    
    session["chat_history"] = []
    save_session(request.session_id, session)
    
    return {"status": "success", "message": "Chat history cleared"}

# Route to list available models
@app.get("/models")
async def get_models():
    # You can expand this list as needed
    models = [
        {"id": "meta-llama/llama-4-scout-17b-16e-instruct", "name": "Llama 4 Scout 17B"},
        {"id": "llama-3.1-8b-instant", "name": "Llama 3.1 8B Instant"},
        {"id": "llama-3.3-70b-versatile", "name": "Llama 3.3 70B Versatile"},
    ]
    return {"models": models}

# Run the application if this file is executed directly
if __name__ == "__main__":
    uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)