Spaces:
Running
Running
File size: 8,456 Bytes
52c6dbe a193f24 a0f5aa1 a193f24 52c6dbe a193f24 52c6dbe a193f24 52c6dbe a193f24 52c6dbe a193f24 a0f5aa1 a193f24 a0f5aa1 a193f24 52c6dbe a193f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import dotenv
import pickle
import uuid
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, BackgroundTasks, Request
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import uvicorn
from preprocessing import (
model_selection,
process_pdf_file,
chunk_text,
create_embeddings,
build_faiss_index,
retrieve_similar_chunks,
agentic_rag,
tools,
memory
)
from sentence_transformers import SentenceTransformer
import shutil
import traceback
# Load environment variables
dotenv.load_dotenv()
# Initialize FastAPI app
app = FastAPI(title="PDF Insight Beta", description="Agentic RAG for PDF documents")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create upload directory if it doesn't exist
UPLOAD_DIR = "uploads"
if not os.path.exists(UPLOAD_DIR):
os.makedirs(UPLOAD_DIR)
# Store active sessions
sessions = {}
# Define model for chat request
class ChatRequest(BaseModel):
session_id: str
query: str
use_search: bool = False
model_name: str = "meta-llama/llama-4-scout-17b-16e-instruct"
class SessionRequest(BaseModel):
session_id: str
# Function to save session data
def save_session(session_id, data):
sessions[session_id] = data
# Create a copy of data that is safe to pickle
pickle_safe_data = {
"file_path": data.get("file_path"),
"file_name": data.get("file_name"),
"chunks": data.get("chunks"),
"chat_history": data.get("chat_history", [])
}
# Persist to disk
with open(f"{UPLOAD_DIR}/{session_id}_session.pkl", "wb") as f:
pickle.dump(pickle_safe_data, f)
# Function to load session data
def load_session(session_id, model_name="meta-llama/llama-4-scout-17b-16e-instruct"):
try:
# Check if session is already in memory
if session_id in sessions:
return sessions[session_id], True
# Try to load from disk
file_path = f"{UPLOAD_DIR}/{session_id}_session.pkl"
if os.path.exists(file_path):
with open(file_path, "rb") as f:
data = pickle.load(f)
# Recreate non-pickled objects
if data.get("chunks") and data.get("file_path") and os.path.exists(data["file_path"]):
# Recreate model, embeddings and index
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = create_embeddings(data["chunks"], model)
index = build_faiss_index(embeddings)
# Recreate LLM
llm = model_selection(model_name)
# Reconstruct full session data
data["model"] = model
data["index"] = index
data["llm"] = llm
# Store in memory
sessions[session_id] = data
return data, True
return None, False
except Exception as e:
print(f"Error loading session: {str(e)}")
return None, False
# Mount static files (we'll create these later)
app.mount("/static", StaticFiles(directory="static"), name="static")
# Route for the home page
@app.get("/")
async def read_root():
return {"status": "ok", "message": "PDF Insight Beta API is running"}
# Route to upload a PDF file
@app.post("/upload-pdf")
async def upload_pdf(
file: UploadFile = File(...),
model_name: str = Form("meta-llama/llama-4-scout-17b-16e-instruct")
):
# Generate a unique session ID
session_id = str(uuid.uuid4())
file_path = None
try:
# Save the uploaded file
file_path = f"{UPLOAD_DIR}/{session_id}_{file.filename}"
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Check if API keys are set
if not os.getenv("GROQ_API_KEY"):
raise ValueError("GROQ_API_KEY is not set in the environment variables")
# Process the PDF
text = process_pdf_file(file_path)
chunks = chunk_text(text, max_length=1500)
# Create embeddings
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = create_embeddings(chunks, model)
index = build_faiss_index(embeddings)
# Initialize LLM
llm = model_selection(model_name)
# Save session data
session_data = {
"file_path": file_path,
"file_name": file.filename,
"chunks": chunks,
"model": model,
"index": index,
"llm": llm,
"chat_history": []
}
save_session(session_id, session_data)
return {"status": "success", "session_id": session_id, "message": f"Processed {file.filename}"}
except Exception as e:
# Clean up on error
if file_path and os.path.exists(file_path):
os.remove(file_path)
error_msg = str(e)
stack_trace = traceback.format_exc()
print(f"Error processing PDF: {error_msg}")
print(f"Stack trace: {stack_trace}")
return JSONResponse(
status_code=400,
content={
"status": "error",
"detail": error_msg,
"type": type(e).__name__
}
)
# Route to chat with the document
@app.post("/chat")
async def chat(request: ChatRequest):
# Try to load session if not in memory
session, found = load_session(request.session_id, model_name=request.model_name)
if not found:
raise HTTPException(status_code=404, detail="Session not found. Please upload a document first.")
try:
# Retrieve similar chunks
similar_chunks = retrieve_similar_chunks(
request.query,
session["index"],
session["chunks"],
session["model"],
k=3
)
context = "\n".join([chunk for chunk, _ in similar_chunks])
# Generate response using agentic_rag
response = agentic_rag(
session["llm"],
tools,
query=request.query,
context=context,
Use_Tavily=request.use_search
)
# Update chat history
session["chat_history"].append({"user": request.query, "assistant": response["output"]})
save_session(request.session_id, session)
return {
"status": "success",
"answer": response["output"],
"context_used": [{"text": chunk, "score": float(score)} for chunk, score in similar_chunks]
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing query: {str(e)}")
# Route to get chat history
@app.post("/chat-history")
async def get_chat_history(request: SessionRequest):
# Try to load session if not in memory
session, found = load_session(request.session_id)
if not found:
raise HTTPException(status_code=404, detail="Session not found")
return {
"status": "success",
"history": session.get("chat_history", [])
}
# Route to clear chat history
@app.post("/clear-history")
async def clear_history(request: SessionRequest):
# Try to load session if not in memory
session, found = load_session(request.session_id)
if not found:
raise HTTPException(status_code=404, detail="Session not found")
session["chat_history"] = []
save_session(request.session_id, session)
return {"status": "success", "message": "Chat history cleared"}
# Route to list available models
@app.get("/models")
async def get_models():
# You can expand this list as needed
models = [
{"id": "meta-llama/llama-4-scout-17b-16e-instruct", "name": "Llama 4 Scout 17B"},
{"id": "llama-3.1-8b-instant", "name": "Llama 3.1 8B Instant"},
{"id": "llama-3.3-70b-versatile", "name": "Llama 3.3 70B Versatile"},
]
return {"models": models}
# Run the application if this file is executed directly
if __name__ == "__main__":
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|